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Abstract

Hypertension or high blood pressure is the leading risk factor with the largest contribution to

the burden of disease and mortality. According to World Health Organization (WHO), hyper-

tension is a serious medical condition that greatly increases the chances of getting diseases of

the heart, brain, kidneys, and other organs. Therefore, regular blood pressure (BP) checks are

necessary to track hypertension and reduce risk.In the light of this, we have devised a non-

invasive method based on photoplethysmography (PPG) signal and demographic features

using deep learning techniques for hypertension detection in the literature. PPG signals were

acquired from 219 subjects, which undergo pre-processing steps. Finally, hypertension was

detected by using 2 proposed models. Proposed model 1 constructed with Convolutional

Neural Network (CNN) and Long Short-Term Memory( LSTM) achieved an Accuracy of

81.06 %, Recall of 86.80 %, Precision of 84.24% and F1-score of 85.5%. Proposed model 2

constructed with CNN and Gated Recurrent Unit (GRU) achieved an Accuracy of 85.00 %,

Recall of 84.44 %, Precision of 87.77% and F1-score of 86.08%. Our purpose is to detect

hypertension more precisely to enhance the medical field.
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Chapter I

Introduction

1.1 Introduction

Hypertension is a chronic clinical disorder characterized by persistently increased BP in the

vessels. BP is the force that moves blood through the circulatory system. There are a variety

of potentially fatal health issues that can be exacerbated by chronic hypertension, such as:

strokes, heart disease, heart attacks, aortic aneurysms, vascular dementia etc. As stated by

the World Health Organization (WHO) , an estimated 1.28 billion 30-to-79-year-old adults

have hypertension. Over two-thirds of the world’s hypertensive population resides in middle-

income and low-income nations. Tragically, less than 20% of persons with hypertension have

the condition under control. [2].

Convenient and precise BP assessment is critical for the prevention, evaluation, and medi-

cation of hypertension [3]. For this reason, an inexpensive, non-invasive and comfortable

BP estimation method is needed. There are several non-invasive methods for BP estimation.

Although standard cuff-based BP monitoring delivers precise readings, it cannot be utilized

for regular monitoring and might be uncomfortable and inconvenient for the patient [4]. The

reference BP can also be measured with a BP monitor [5]. However, if the heart is beat-

ing too fast or slow, assessment will be difficult using this method. Volume clamp method

can also be utilized. But, this method often overestimates systolic BP. Another method is

smartphone based approach with the complication that smartphone PPG signals an be easily

affected by motion and noise artifact [6].

Recently, photoplethysmography (PPG) has been used as a potentially useful non-invasive

method for continuous BP measurement [7]. It is a useful technique to detect blood volume

changes at a low cost. PPG device consists of light emitting diodes (LED) to illuminate the

dermal tissue and detect variations in blood volume by determining the intensity of the re-

flected light. There are some characteristics of PPG [1] which is important to measure blood
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pressure are systolic peak, diastolic peak, dicrotic notch, reflected wave peak. Recently, ad-

vancements in this technique have shown encouraging outcomes in terms of accuracy, prac-

ticality, and clinical acceptance [8]. So, researchers from all over the world have currently

shown a lot of interest in obtaining useful information from the PPG signal.

1.2 Motivation

Cardiovascular diseases (CVD) are the leading cause of worldwide mortality, and since hy-

pertension is a major predictor of CVD, proper monitoring and management of blood pres-

sure (BP) is important. However, a discrete BP measurement, generally performed in clini-

cal settings with a conventional cuff-type oscillometric device, can lead to misdiagnosis and

cannot observe circadian fluctuations of BP. Hence conventional cuff-based method is not

practical due to its inconvenient and cumbersome nature. Nowadays, PPG is considered as

one of the best method for clinical applications, allowing simple, unobtrusive and inexpen-

sive way of monitoring the physiological parameters ubiquitously which is also observed in

recent research. Therefore, in this system we have developed a non-invasive hypertension

classification technique based on PPG signal.

1.3 Problem Statement

Hypertension (or high blood pressure [BP]) is a significant health issue for adults that can

result in serious complications, such as stroke and heart diseases. Continuous BP monitoring

is critical for groups of patients other than those with hypertension. For example, in patients

with spinal cord injury (SCI), an abrupt rise in BP (in excess of 20 mmHg SBP) caused

by autonomic dysreflexia (AD) (an autonomic reflex response to nociceptive stimuli), could

lead to disabling headache, seizure, cerebral hemorrhage, and even death. As such, accurate

and continuous monitoring of BP is critical for early detection of episodes of AD in these

patients, to enable them with seeking timely medical treatments. There have been many non-

invasive methods for blood pressure measurement such as the mercury sphygmomanometer,

oscillometry, volume clamping . Most non-invasive devices used for blood pressure mea-

surement are cumbersome to carry, time-consuming to use, and inconvenient for portability
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1.4 Objectives

Our main purpose of the thesis is to develop a non-invasive hypertension detection technique

from PPG signal. Therefore, the objectives of the thesis are to:

• Study existing systems for hypertension detection.

• To find the best method for Non-Invasive hypertension detection.

• Prediction with more accuracy than existing other methods.

• Improve evaluation parameters.

• Build a robust and inexpensive system that can predict hypertension as accurately as

possible

1.5 Methodology

In this system, our proposed hypertension detection methods is a non-invasive method based

on PPG and demographic features. At first, PPG signal is preprocessed. Z-score normal-

ization was performed on the data for data scaling. The signal filtered with butterworth low

pass filter to eliminate noise. The first model is constructed with 3 CNNs and 1 LSTM. It

is developped by stacking the 1D convolutional layers,ReLU activation, batch normaliza-

tion and max-pooling layers in CNN. Then LSTM is added with a dropout layer to prevent

overfitting, Which is followed by 1 flatten layer and 3 dense layer.

The second model is developped with 2 CNNs and 1 GRU. It is construced by stacking time

distributed 1D convolutional layers, max-pooling layers in CNN which is follwed by flatten

and dropout layes. Then 1 GRU is applied with a dropout layer. Finally, 3 dense layers were

applied. The second model performed better than the first model with an Accuracy of 85.00

%.

1.6 Contributions

Our contributions in thesis system are listed as follows :
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• Formation of a simple, accurate and inexpensive non-invasive hypertension detection

method using PPG signal.

• Preprocess the input data to get noiseless PPG signals.

• Constraction of a hybrid model that will automatically extract features.

• Development of model 1 and model 2 for hypertension detection using extracted fea-

tures.

• Application of deep learning models for multiclass classification.

1.7 Thesis Organization

Chapter II: In this chapter, we reviewed some earlier research related to hypertension

detection. It includes deep learning and machine learning based approaches.

Chapter III:In this chapter, we presented some theoretical approaches for developing

our model.

Chapter IV: In this chapter, we illustrated our proposed methodology and discussed

about our proposed models.

Chapter V: In this chapter, we examined our model and demonstrated the results while

comparing them with existing other model in different experiments.

Chapter VI: We summarized the entire thesis, outlined our future plans, and con-

cluded the thesis in this chapter.
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Chapter II

Literature Review

2.1 Introduction

Hypertension is an important disease seen among the public, and early detection of hyper-

tension is significant for early treatment. There are several studies in the literature on the

detection and classification of hypertension in recent years. They have used statistical fea-

tures and some others used morphological features and wavelet transformed features from

raw PPG signals to predict hypertension. The field of biomedical signal processing applica-

tions has shown increased interest in deep learning approaches.

2.2 Related work

Mangathayaru et al. [9] suggested an innovative approach for the prediction of hypertension

utilizing a dual-tree complex wavelet transform (DT-CWT)-based feature extraction algo-

rithm with a Gated Recurrent Unit (GRU) network. They have utilized the BIDMC PPG and

Respiration Dataset which is freely available on PhysioBank. Using a Chebyshev II with

bandpass filter of fourth order with a cutoff frequency range of 0.5–12 Hz, the pandemo-

nium in PPG signals is removed. In Step 2, preprocessed signals were used to extract the

most important characteristics. GRU classifier receives as input attributes that were extracted

using DT-CWT method. The classifier assigns each Feature to its respective class label. The

proposed method (when used in conjunction with DTCWT and GRU’s) greatly increases the

classification and performance of the system and provide precise detections with an accuracy

rate of 98.8 %.

Wu et al. [10] established a new algorithm for predicting blood pressure classification from

PPG by matching Continuous Wavelet Transform (CWT) type and segment length. Both

wavelet type and segment length could affect the accuracy. The data were obtained from
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PhysioNet’s Multiparameter Intelligent Monitoring in Intensive Care-III (MIMIC-III) Wave-

form Database. Each PPG segment was initially processed with a moving average filter to

smooth the PPG signal. Scalograms of the PPG signal are generated using a variety of

wavelet transforms, including Frequency B-Spline wavelet (fbsp1-15-1), Shannon (shan15-

1), Complex Gaussian wavelet (cgau1), Morlet wavelet(morl), Mexican hat wavelet (mexh),

and Gaussian wavelet (gaus1). Using CNN for BP classification, the combination of cgau1

CWT and segment-300 (2.4 s) in the work is the optimal option. This method provided an

accuracy of 90 % without obvious overfitting. The limitation of this paper is not all wavelets

were evaluated on the MIMIC dataset, hence cgau1 might not be the optimum CWT for BP

classification.

Tjahjadi et al. [11] suggested a comprehensive method for classifying BP based on PPG

signal utilizing bidirectional long-short-term memory (Bi-LSTM) and time-frequency (TF)

analysis. They used the PPG-BP dataset. In data preprocessing step, data exploration is

carried out by using a spectrum. The TF analysis retrieves information from PPG signals

using a short-time Fourier transform (STFT) in the time domain to generate two features,

instantaneous frequency and spectrum entropy. Time frequency moment can be employed

as a one-dimensional input to Bi-LSTM networks. Training the Bi-LSTM network with TF

features greatly enhances classification performance and reduces training time. Bi-LSTM

classifiers are then utilized to classify the BP.

Ivan et al. [12] constructed a BP classification model as a convolutional neural network

(CNN) – long short term memory (LSTM) hybrid model, with layers of both CNN and

LSTM. They used the ”Cuff-Less Blood Pressure Estimation Data Set”, published in the

UCI Machine Learning Repository. The PPG signal is filtered with a filter of the fourth

order and the ECG signal with a filter of the fifth order. The class imbalance problem in the

dataset was solved by assigning weight to the classes. Multivariate sequential CNN-LSTM

architecture was employed for the model. It is a hybrid neural network incorporating both

CNN and LSTM layers. The proposed model achieves an accuracy rate of 83 % and stability

across all metric classes (AUCROC for each class is 0.89, 0.83, and 0.90, correspondingly).

Eric et al. [13] proposed to utilize the wavelet scattering transform( WST) as a feature ex-

traction technique to get features from PPG data and integrate it with clinical data to identify
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early hypertension stages by utilizing Early and Late Fusion. In contrast to other trans-

forms such as the Fourier Transform (FT) and Wavelet Transform( WT), the WST produces

a translation-invariant representation that is stable to mild time-warping deformations in or-

der to build a signal representation that is suited for classification tasks. They collected the

dataset from the Guilin People’s Hospital in Guilin, China. To handle multimodal data in the

context of ML, the literature opted for model-agnostic techniques. These methods are classi-

fied as Early Fusion (feature-based), Late Fusion (decision-based), and Hybrid Fusion. The

fusion processes were performed without a deep neural network to prevent computational

complexity and preserve the interpretability of the final model. The study utilized a num-

ber of machine learning( ML) methods such as Logistic regression( LR), Linear Discrimi-

nant Analysis( LDA), Decision trees( DT), K-nearest neighbor( KNN) and Support vector

machines( SVM). This study demonstrated that the PPG characteristics generated from the

wavelet scattering transform in association with a support vector machine can classify nor-

motension and prehypertension with an accuracy of 71.42% and an F1-score of 74.9 %.

Yen et al. [14] proposed a deep learning based approach for hypertension detection using

deep residual network convolutional neural network( ResNetCNN) and BILSTM from PPG

signal. The study utilized the database created by Liang et al., which includes data collected

from 219 participants aged 20–89 years at Guilin People’s Hospital in mainland China. They

compared the accuracy of two deep learning models for cardiovascular ailment classification,

namely ResNetCNN + BILSTM and Xception + BILSTM. When the layers= 37, kernel=

32, and kernel size = 36, the Xception + BILSTM model achieved its best results, with an

accuracy of 76 %, a recall of 45%, and a precision of 48%.

Yunendah et al. [15] suggested a diagnosis system for blood pressure level classification

using concatenated CNN based on physiological data derived from PPG and ECG signals.

They used the MIMIC III dataset. In order to produce one cycle of PPG and ABP signals,

the segmentation method was applied based on the R-R peak detection of the ECG signal.

To eliminate noise from PPG and ECG signals, a bandpass filter with cutoffs of 0.5–10 Hz

and 0.5–40 Hz was used. In this study, PPG and ECG signals were employed as input to a

concatenated 1-D CNN. To evaluate the generalization capacity of deep neural networks in

classifying unseen data, they utilized 5-fold cross-validation. The optimum structure of the

suggested model was determined by comparing five architectures of CNN models based on



8

layer depth. Concatenated CNN models with five convolutional layers produced the most

accurate classification of blood pressure values.

Elisa et al. [16] proposed a system to evaluate the applicability of Pulse Rate Variability

(PRV) derived features for the classification of BP values using ML algorithms. They used

the MIMIC II waeform database. MATLAB® (version 2020a) was used for signal pro-

cessing. A fourth order lowpass Butterworth filter was used. Time and frequency-domain

indices, and non-linear indices extracted from Poincaré plot, entropy, phase, and detrended-

fluctuation (DFA) analyses were obtained from PRV data from each segment. After the

filtering process, a sequential forward selection (SFS) scheme with k-fold cross-validation

(k = 10) was applied to identify the best combination of features for each machine learning

algorithm applied. The result showed around 70 % accuracy and around 75 % specificity.

The sensitivity, precision and F1 scores were around 50 %.
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Chapter III

Theoretical Considerations

In this chapter, we review some of the theoretical concepts which helped us to develop the

methodology for our proposed system.

3.1 Photoplethysmography (PPG) Signal

Photoplethysmography (PPG) is a quick and inexpensive optical method that can be used

to detect changes in blood volume in the microvascular bed of tissue. It is also known as

pulse oximeter waveform. It is widely used to obtain measurements at the skin’s surface

non-invasively. Due to their wearable application against traditional ECG technology, PPG

signals are growing in popularity for heart rate (HR) monitoring. These signals are obtained

through pulse oximeters embedded in a small wearable device worn on the earlobes, finger-

tips, or at the wrists. Digital signal processing techniques may be used to evaluate PPG and

provide new physical characteristics with the extension of PPG’s potential benefits. There

are several characteristics of PPG signal such as systolic peak, reflected wave peak, dicrotic

notch, diastolic peak. These characteristics are important to measure BP and detect hyper-

tension. 3.1 depicts the PPG signal with its characteristic features.

3.2 Activation Function

A neuron’s activation is controlled by an activation function. During the prediction phase, it

performs simpler mathematical operations to decide whether or not the neuron’s input to the

network is crucial. It describes how a node or nodes in a network layer produce an output

from the weighted sum of the input. Different activation functions may be used in various

parts of the model, and the choice of activation function has a substantial impact on the

capabilities and performance of the neural network.

To increase the nonlinearity of a neural network, an activation function is used. A neural

network without activation functions will simply apply a linear transformation to the inputs
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Figure 3.1: PPG signal with its characteristic features[1].

using the weights and biases. No matter how many hidden layers we add to the neural

network because the combination of two linear functions is a linear function, all layers will

behave the same. Therefore, without an activation function, learning any complex job would

be impossible.

3.2.1 Rectified Linear Unit (ReLU)

Figure 3.2: Rectified linear unit.

The rectified linear activation function, or ReLU activation function is the most common

function used for hidden layers. It is one of the most prevalent activation functions in deep

learning models. Almost all convolutional neural networks or deep learning models use
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the ReLU function. The ReLU function takes the maximum value. It is a piecewise linear

function that, if the input is positive, outputs the value directly; otherwise, it outputs zero.

The ReLU function’s equation is given by:

f (x) = max(0,x) (3.1)

where x denotes the input to neuron. It is a Ramp function.

This is depicted graphically as Fig 3.2

3.2.2 Softmax

Figure 3.3: Softmax.

The neural network’s unprocessed outputs are converted into a vector of probabilities—basically,

a probability distribution over the input classes—by the softmax activation function. Fig. 3.3

shows softmax activation curve. The follwing is the equation of softmax activation function:

so f tmax(z)i =
ezi

∑
N
j=1 ez j

(3.2)

Where z is the vector of raw outputs from the neural network. The ith entry in the softmax

output vector softmax(z) can be thought of as the predicted probability of the test input

belonging to class i.
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3.3 Adam Optimizer

Adaptive Moment Estimation is a technique for optimizing gradient descent algorithms.

Momentum

By taking into account the ‘exponentially weighted average’ of the gradients, this approach

is utilized to speed up the gradient descent algorithm. Using averages accelerates the algo-

rithm’s convergence to the minima.

wt+1 = wt −αtmt (3.3)

where,

mt = βmt−1 +(1−β )[
∂L
∂wt

] (3.4)

Here, mt denotes the aggregate of gradients at time t (initially, mt = 0), mt−1 denotes the

aggregate of gradients at time t − 1, wt and wt+1 refer to the weights at time t and t + 1

respectively, αt is the learning rate at time t, ∂L and ∂wt refer to the partial derivative of loss

function and weights at time t and β is the moving average parameter.

Mathematical Model of Adam Optimizer

Using the formulas of the above methods we get, mt = β1mt−1 +(1−β1)[
∂L
∂wt

] and vt =

β2vt−1+(1−β2)[
∂L
∂wt

] 2. Because mt and vt were both initialized as 0 (based on the previous

approaches), it is noted that as both β1 and β2 ≈ 1, they become ‘biased towards 0’. This

Optimizer solves the problem by computing mt and vt that are ‘bias-corrected.’ This is also

done to keep the weights under control as they approach the global minimum, preventing

high oscillations when they get too close. The following are the formulas that were used:

m̂t =
mt

1−β t
1

(3.5)

v̂t =
vt

1−β t
2

(3.6)

We are, intuitively, adapting to the gradient descent after each iteration so that the process

remains controlled and unbiased, hence the name Adam.
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We will now use the bias-corrected weight parameters m̂t and v̂t instead of our standard

weight parameters mt and vt . When we plug them into our general formula, we obtain:

wt+1 = wt − m̂t
( α√

v̂t + ε

)
(3.7)

3.4 Loss Function

A loss function analyzes how effectively the neural network models the training data by

comparing the target and forecasted output values. Loss function optimize parameters for

the neural network. When training, we aim to minimize this loss between the predicted and

target outputs. We used the categorical cross-entropy loss function here.

3.4.1 Categorical Cross-entropy

The cross entropy loss function is an optimal function that is used while training a classifi-

cation model that classifies data by determining whether the data belongs to one class or the

other. Categorical cross-entropy is suitable for multiple classification task. It is used as a loss

function in multi-class classification models with two or more output labels. In this function

the class number and the output node will be equal. Final value of the layer is forwarded to

a softmax activation function that will give a probability between [0-1]. A perfect model has

a cross-entropy loss of 0. The following formula computes the categorical cross-entropy:

LCE =−
n

∑
i=1

tilog(pi) (3.8)

Where ti is prediction and pi is the softmax probability for the ith class.

3.5 Learning Rate

The learning rate is a hyperparameter that specifies how much the model should change

in response to the predicted error each time the model weights are updated. Choosing the

learning rate is difficult since a value too low may result in a prolonged training process that

might get stuck, but a value too high may result in learning a suboptimal set of weights too

quickly or an unstable training process. It is a small positive value, often in the range between
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0.0 and 1.0. The learning rate determines how fast the model adapts to the problem. Smaller

learning rates need more training epochs because to the smaller changes made to the weights

with each update, whereas larger learning rates result in quick changes and necessitate fewer

training epochs.

3.6 Stratified KFold Cross Validation

A variation on standard kfold cross validation, stratified kfold cross validation is used for

classification issues where, as opposed to entirely random splits, the ratio of target classes

is the same in each fold as it is across the entire dataset. When our data are unbalanced and

on the small side in terms of size, stratified kfold cross validation is often helpful. In order

to address class imbalance, we will occasionally over- or under-sample our data. However,

there are other occasions when we wish to keep the class imbalance because it is indicative

of or provides information about the phenomenon we are trying to classify. The dataset is

divided into 10 parts: 9 of them are utilized for training and the rest is utilized for testing.

3.7 CNN

A convolutional neural network (CNN) is a class of deep neural networks, most commonly

applied to analyze visual imagery. The role of the CNN is to reduce the images into a form

that is easier to process, without losing features that are critical for getting a good predic-

tion. CNN is identical to the classic ANN. It consists of neurons that optimize themselves

through learning. Each neuron receives an input and carries out an operation. The funda-

mental concept underlying the operation of Neural Networks has always been to emulate the

functioning of the human brain to the greatest extent possible. CNN assists to this by work-

ing with the visual sensory organs of live organisms and, in the process, recognizing various

forms of object, be it Digit, Image, or a particular activity in any object, by employing a

series of approaches in a particular order. CNN is typically composed of three types of lay-

ers (or building blocks): convolution, pooling, and fully connected layers as shown in Fig.

3.4. The first two, convolution and pooling layers, perform feature extraction, whereas the

third, a fully connected layer, maps the extracted features into final output, such as classifi-

cation. As one layer feeds its output into the next layer, extracted features can hierarchically
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Figure 3.4: CNN basic architecture.

and progressively become more complex. These layers have distinct importance during the

learning phase. A brief description of these layers follows.

3.7.1 Convolution

The objective of convolution layers is feature extraction from images. Convolution involves

sliding the kernel over the input signal which is also known as shift-compute procedure. By

shifting the filters along the input and computing the dot product of the weights and input,

followed by the addition of a bias term, the layer convolutionally transforms the input. 1-D

convolution uses two signals. The convolution takes input vector f and kernel g, and say

where f has length n, and g has length m. The convolution f g of f and g is defined as:

( f ∗g)(i) =
m

∑
j=1

g( j) · f (i− j+m/2) (3.9)

The size of the output vector is the same as the size of the input.

3.7.2 Pooling

Pooling conducts downsampling by decreasing the size and transmits only the essential data

to subsequent CNN layers. It is a sample-based discretization procedure. The primary ob-

jective of pooling is to minimize the size of feature maps, which as a result accelerates

computation by reducing the number of training parameters. Pooling types include maxi-

mum pooling and average pooling. Max pooling pools or takes the maximum value while

average pooling takes the region’s average value. With the preceding activation functions,
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convolution and max pooling are implemented to the hidden layer to introduce nonlinearity.

There are two primary purposes, namely feature extraction and categorization.

3.7.3 Feature Extraction

Convolution layer identifies the significant features. Additional features are obtained when

more layers are added. The layers in close proximity to the input layer identify the features.

The deeper layer combines the simple features and generates complicated features that are

difficult for humans to comprehend, making categorization easier. Utilizing a filter, an output

feature map is created.

3.8 LSTM

Long short term memory (LSTM) is a special kind of RNN, which is designed to solve

the gradient disappearance and gradient explosion problems during the training of long se-

quences. In simple terms, it means that LSTM can perform better on longer sequences than

normal RNN. The first step in the LSTM is to decide what information we’re going to throw

away from the cell state. The next step is to decide what new information we’re going to

store in the cell state. Then the old cell state is updated. Finally, we need to decide what

we’re going to output. Fig. 3.5 shows the basic structure of LSTM. Four neural networks and

several memory cells make up the chain structure of the LSTM. The cells store information,

while the gates perform memory alterations. There are three gates, forget gate, input gate

and output gate. The input gate determines what data is added to the memory cell. The forget

gate determines what data is deleted from the memory cell. And the output gate determines

what data is output from the memory cell.

• Forget gate

Two inputs, xt (at-the-time input) and ht−1 (previous cell output), are supplied into the

gate and multiplied using weight matrices before bias is added. The result is trans-

mitted to an activation function, which produces a binary output. If the output for a

certain cell state is 0, the information is lost; if the output is 1, the information is saved

for future use.
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• Input gate

The information is monitored using the sigmoid function, and the values to be remem-

bered are filtered using the ht−1 and xt inputs, similar to the forget gate. The tanh

function is then used to generate a vector with values ranging from -1 to +1 that en-

compasses all of the possible values from ht−1 and xt . Finally, the vector and regulated

values are multiplied to provide relevant information.

• Output gate

By using the tanh function on the cell, a vector is first created. Following that, the

data is controlled by the sigmoid function and filtered by the values that need to be

remembered using the inputs h t-1 and x t. In order to provide the values as an output

and an input to the following cell, the vector’s values and the controlled values are

finally multiplied.

ft = σ
(
Wf xt +U f ht−1 +b f

)
(3.10)

it = σ (Wixt +Uiht−1 +bi) (3.11)

oi = σ (Woxt +Uoht−1 +bo) (3.12)

C̃t = tanh(Wcxt +Ucht−1 +bc) (3.13)

Ct = ft ⊙Ct−1 + it ⊙C̃t (3.14)

ht = ot ⊙ tanh(Ct) (3.15)

Equation 3.23− 3.25 defines the forget, input and output gates of each LSTM block. The

block input, which consists of a tanh layer and an input gate is specified as C̃t in equation

3.26 at time t. They collaborate to select what data will be kept in the cell state, Ct . At time

t, the cell state is updated from the previous cell state. W and U are weight matrices and b is

a bias vector. Finally, the hidden state ht is block output at time t.
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Figure 3.5: LSTM basic architecture.

3.8.1 Activation Function

Activation function in neural network describes how a node or nodes in a layer of the network

convert the weighted sum of the input into an output. In LSTM blocks, the two most popular

activation functions, sigmoidal and hyperbolic tangent are used. The sigmoid function has a

range of [0, 1]. The formula is given by:

σ (x) =
1

e−x −1
(3.16)

The hyperbolic tangent formula referred to as the hyperbolic function is given by:

tanh(x) =
sinh(x)
cosh(x)

(3.17)

3.9 GRU

Gated Recurrent Unit (GRU) is a type of recurrent neural network. It resembles an LSTM.

With the benefit of being faster to calculate, the gated recurrent unit (GRU) provided a sim-

plified version of the LSTM memory cell that frequently achieves equivalent performance.

GRUs are typically simpler/faster to train than their LSTM counterparts because of the archi-

tecture’s simplicity. It also has three gates: an update gate, a reset gate and current memory
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gate. Fig 3.6 specifies the architecture of GRU. The different gates of a GRU are as described

below:

• Update Gate

It determines the amount of past data that must be sent into the future. It is comparable

to the Output Gate in an LSTM recurrent unit. In equ 3.18, Wz and Uz are the parameter

matrices and bz is the bias vector.

zt = σ (Wzxt +Uzht−1 +bz) (3.18)

• Reset Gate

It specifies how much of the past information should be forgotten. It is comparable to

how the Input Gate and Forget Gate work together in an LSTM recurrent unit. In equ

3.19, Wr and Ur are the parameter matrices and br is the bias vector.

rt = σ (Wrxt +Urht−1 +br) (3.19)

• Current Memory Gate

Current Memory Gate is incorporated into the Reset Gate. It is used to introduce some

non-linearity into the input and to also make the input Zero-mean.

3.10 Time Distributed Layer

Time Distributed Layer is one type of wrapper used for time data or vedio frames. Every

temporal slice of an input can have a layer applied to it using this wrapper. Each input

must have a minimum of three dimensions, with the temporal dimension being the index-

one dimension of the first input. For example, if we apply this around a Conv2D layer, the

identical set of weights are applied at each timestamp since TimeDistributed uses the same

instance of Conv2D for all of the timestamps.



20

Figure 3.6: GRU basic architecture.

3.11 Dense Layer

A layer utilized in the last phases of the neural network is referred to as a dense layer, also

known as a fully connected layer. This layer contains densely connected neurons. Each of

the individual neurons of the layer takes the input data from all the other neurons before a

currently existing one. Internally, the dense layer is where various multiplication of matrix

vectors is carried out. This layer assists in changing the dimensionality of the output from

the preceding layer , allowing the model to more clearly identify the relationship between

the values of the data it is working with. This is why the dense layer is most often used

for vector manipulation to change the dimensions of the vectors. The vector’s translation,

scaling, and rotation may all be accomplished by the dense layer.

3.12 Flatten Layer

Flatten layer performs the process of transforming data into a 1-dimensional array for in-

putting it into the following layer. The output of the convolution layers is flattened to form a

single long feature vector. It is also linked to the final classification model, which is known

as a fully-connected layer or dense layer. It collapses the spatial dimensions of the input into

the channel dimension. Flatten layer flattens the input and does not affect the batch size.
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3.13 Dropout Layer

Dropout layer prevents the problem of overfitting in the training data. If they aren’t present,

the first batch of training samples influences the learning in a disproportionately high manner.

This in turn, would prevent the learning of features that appear only in later samples or

batches. Dropout contributes to a reduction in overfitting by decreasing the squared norm

of the weights. In drop out, nodes are dropped randomly and thus the model can learn

independent representations. Overall, a better performance is achieved by applying drop out.
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Chapter IV

Proposed Method

In this chapter, the overall methodology of the proposed system is depicted briefly. The

proposed system is designed to take PPG signals as input and classify Hypertension that

is non-invasive and faster approach. This chapter is comprised of 6 sections: section 4.1

depicts the overall system architecture, section 4.3 illustrates the data preprocessing, section

4.5 depicts the first hybrid model and section 4.6 describes the second hybrid model and

section 4.7 defines the model construction method and techniques.

4.1 System Architecture

In this section, the overall system architecture of the proposed system containing two Deep

Learning models is depicted in Figure. 4.1. The system is composed of two models - the

1st model is a hydrib model CNN-LSTM and the 2nd model is a hybrid of CNN-GRU.

Both models are Deep Learning models with several neurons and hidden layers. The system

takes PPG signal as input from patients and classify 4 state of Hypertension: i) Normal, ii)

Prehypertension , iii) Stage 1 hypertension and iv) Stage 2 hypertension.

4.2 Dataset

We used dataset from Liang et al. [17] for this study. This dataset includes 219 subjects’ 657

PPG signal samples [18]. The PPG signal has a signal duration of 2.1 s, 2100 data points per

signal, and is sampled at a rate of 1000 Hz. A raw PPG signal is shown in Fig. 4.2. There

is also the patient’s demographic information such as age, gender, height, and weight along

with systolic pressure, diastolic pressure, and heart rate. Table 1 gives an overview of the

demographic dataset.

4.3 Data Pre-Processing

The raw PPG signals are preprocessed by following methods:
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Dataset

Demographic
Information

Raw PPG Signal

Preprocessing

10-fold Cross
Validation
(Stratified)

Deep Learning models
(CNN+LSTM

or
CNN+GRU)

Hypertension
Classification

Figure 4.1: Proposed system architecture
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Table 4.1: Patient’s demographic information.

Physical Index Numerical Data
Females 115(52%)

Age( years) 57 ± 15

Height( cm) 161 ± 8

Weight(kg) 60 ± 11

Hypertension 0-4

Figure 4.2: Raw PPG signal.

Data Scaling

Z-score normalization enables a data administrator to comprehend the likelihood that a score

will occur within the data’s normal distribution. Here we use z-score normalization to get

amplitude-limited data. The equation is given below-

Zscore Normalized Signal =
Signal −Signal Mean

Standered Deviation o f Signal
(4.1)

Signal Filtration

We first filtered the waveforms because the original dataset had noise, baseline drift, and

strange waveforms. A Butterworth low pass filter with a cutoff frequency of 15 Hz is used

in this study to filter the data. The high frequency component of the signals is eliminated by

the low pass filtering. Thus reduces noise in the signal. Fig. 4.3 shows the low pass filtered

signal(orange line) over the normalized raw signal(blue line).
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Figure 4.3: Blue line shows normalized signal, orange line shows sig-
nal after butterworth low pass filter.

4.4 Testing and Training

We split the dataset into 80% training and 20% testing based on similar ratio of levels using

stratify. We use this training set for further train and validation and then calculate prediction

accuracy by this testing dataset.

4.5 Proposed Model: 1

This proposed deep learning framework, uses the CNN and LSTM technique. All sorts of

different classifications can be spit out of this network. The onset of hypertension is antic-

ipated. Model 1’s topology is depicted in Fig. 4.4; it was developed by stacking the CNN,

BatchNormalization, LSTM, and fully connected layer. As a feature extractor, CNN uses

two 1D convolutional layers that are connected by ReLU activation, batchNormalization,

max-pooling, and drop-out layers. In order to forecast physiological parameters, the LSTM

model processes the characteristics extracted from the preceding layer’s output and feeds

them to 3 fully connected layer through Flatten. One LSTM layers with a relu activation and

dropout layer, make up the LSTM model. Below, we’ll go over the specifics of the suggested

model’s architecture:
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Figure 4.4: Model 1’s topology.
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Figure 4.5: Architecture of the proposed Model 1.
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The hybrid architecture of the proposed Model 1 is depicted in Fig. 4.5. It is made up

of three 1D convolutional layers with Batchnormalization. Each of the convolutional layer

have 64 filters with kernel size 3x1. ReLU activation function is used. This results in the

64 activation maps, which at each geographic position where each feature map captures a

separate low-level feature provide the responses of associated filters. Then, using the max

operation, pooling is implemented along the spatial dimensions with size 2. The size of the

space is gradually decreased by this procedure. Next, one LSTM layer of 256 memory cell

is united with CNN model. A flatten layer is also added. Softmax is used to get the final

classification scores, where 4 classes are predicted by each of the 3 fully linked layers’ 128,

64, and 4 output neurons.

4.6 Proposed Model: 2

This proposed deep learning framework, incorporates TimeDistributed CNN-GRU. The net-

work architecture is also intended to support multiclass output and anticipate hypertension.

Figure. 4.6 depicts the Model 2’s topology, which was created by stacking the TimeDis-

tributed CNN, GRU, and fully connected layer. CNN is also used as a feature extractor

in this case but with timeDistributed wrapper and two 1D convolutional layers interleaved

with ReLU activation, maxpooling. The previous layer’s output features are passed through

Flatten then the GRU model and then fed to 3 fully connected layer to predict physiologi-

cal parameters. The GRU model is made up with relu activation and a dropout layer. The

proposed model’s architectural details are discussed further below:

The hybrid architecture of the proposed Model 2 is depicted in Fig. 4.7. It is made up of

two 1D convolutional layers with TimeDistribution. 32 and 64 filters were used in these

convolutional layer with kernel size 3x1. ReLU activation function is used. This results in

the 64 activation maps, which at each geographic position where each feature map captures

a separate low-level feature provide the responses of associated filters. Then, using the max

operation, pooling is implemented along the spatial dimensions with size 2. The size of the

space is gradually decreased by this procedure. Next, one GRU layer of 256 memory cell

is united with CNN model. Softmax is used to get the final classification scores, where 4

classes are predicted by each of the 3 fully linked layers’ 128, 64, and 4 output neurons.
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Figure 4.6: Model 2’s topology.
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Figure 4.7: Architecture of the proposed Model 1.
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4.7 Training and Evaluation

For training both model, 120 epochs with batch size of 32 are used. But the 2nd model

is given an early stop with patience 60. The optimization during the training is performed

by Adam optimizer with learning rate 0.001 and Categorical crossentropy are used as the

loss function to evaluate the performance of proposed framework. The models are validated

using the Stratified KFold cross-validation approach owing to the fact that it always provides

less optimistic and less biased estimation compared to simple train/test split method and also

better classification than Kfold as it ensures that each fold of dataset has the same proportion

of observations with a given label. For this experiment, k is set to 10 and we split the training

data for training and validation. The performance evaluation for the models are done by

averaging the model scores of all the k testing sets wherein accuracy, precision and recall are

considered as effective metrics for classification tasks.
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Chapter V

Result Analysis and Discussion

5.1 Experimental Setup

All the experiments in this proposed system are performed on Colab cloud platform. Ma-

chine configuration of colab platform includes - Nvidia K80 / T4 GPU having 0.82GHz

/ 1.59GHz GPU Memory Clock and 12GB / 16GB Memory, 4.1 TFLOPS / 8.1 TFLOPS

Performance, 10.5 / 12.7 GB RAM and 25.8 / 107.7 GB disk space.

5.2 Experimental Result

1st model’s loss and accuracy of the training set along with validation are depicted in Fig.5.1

and 5.2

0 10 20 30 40 50
epoch

0.05

0.10

0.15

0.20

0.25

lo
ss

model loss
train
val

Figure 5.1: Loss and validation loss for Model 1 (best fold)
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Figure 5.2: Accuracy and validation accuracy for Model 1 (best fold)

As it can be seen from Fig.5.1 and Fig. 5.2, the training and validation loss remain within

0.05 and 0.25 and the training and validation accuracy remain within 0.85 and 0.99 over 120

epochs.

2nd model’s loss and accuracy of the training set along with validation are depicted in Fig.5.3

and 5.4

As it can be seen from Fig.5.4 and Fig. 5.3, the training and validation loss remain within

0.05 and 0.30 and the training and validation accuracy remain within 0.92 and 0.99 over 120

epochs.

5.3 Evaluation Matrices

• Confusion Matrix

Confusion Matrix is a summary table of predicted-labels vs. actual-labels. The amount

of accurate and inaccurate predictions is summarized using count values and catego-

rized by class.
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Figure 5.3: Loss and validation loss for Model 2 (best fold)

True Positive (TP)

A test result that accurately identifies the presence of a condition or feature.

True Negative (TN)

A test result that accurately identifies the absence of a condition or feature.

False Positive (FP)

A test result that inaccurately implies the presence of a particular condition or feature.

False Negative (FN)

A test result that inaccurately implies the absence of a particular condition or feature.
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Figure 5.4: Accuracy and validation accuracy for Model 2 (best fold)

• Accuracy

Accuracy represents the measurement of correctly predicted data over the total data.

It describes the performance of the model across all classes. It is advantageous when

all classes have the equal importance. An accuracy rate is determined by dividing the

number of accurate predictions by the total number of predictions.

Accuracy =
T P+T N

T P+FP+FN +T N
(5.1)

• Precision

Precision is the ratio of correct positive predictions over the total predicted positives.

It is a statistical measure of how well a model can identify positive data from a training

set. Classifying all positive samples as positive and no negative samples as positive is
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what precision aims towards.

Precision =
T P

T P+FP
(5.2)

• Recall

Recall is the ratio of correct positive predictions over the total positives. It is also

known as sensitivity. The recall statistic evaluates how well a model can identify

positive data. The higher the recall, the more positive samples detected. The recall is

only concerned with the classification of positive samples. This is independent of the

classification of the negative samples.

Recall =
T P

T P+FN
(5.3)

• F1 score

F1-Score is calculated by combining Precision and Recall. It was designed to consol-

idate the effectiveness of the accuracy and recall metrics. The F1 score gives equal

weight to Precision and Recall. It is a proposed improvement of two simpler perfor-

mance metrics.

F1−Score = 2∗ Recall ∗Precision
Recall +Precision

(5.4)

• Receiver Operating Characteristic curve (ROC curve)

An ROC curve is a graph that demonstrates the performance of a classification model

across all classification levels. It plots True Positive Rate (TPR) vs. False Positive Rate

(FPR) at different classification thresholds. AUC stands for "Area under the ROC

Curve." AUC measures the entire two-dimensional area underneath the entire ROC

curve from (0,0) to (1,1). The more closer the AUC is to 1, the better performance the

system will give. It is the probability that the model rates an arbitrary positive example

higher than an arbitrary negative example.

T RP =
T P

T P+FN
(5.5)
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FRP =
FP

T N +FP
(5.6)

Classification Result

Accuracy of the proposed system models with 20% test data are given in Table. 5.1.

Table 5.1: Performance measurement of 2 proposed models

Models

Average Performance Measure Criteria(Accuracy)

Training [best fold](%) Validation [best fold](%) Testing (%)

3CNN + 1LSTM 98.00 93.00 81.06

2CNN(TimeDistributed)
+ 1GRU 97.50 95.00 85.00

As illustrated in Table. 5.1, Average Training, Validation, and Testing are predicted with

values of 0.98 0.93 and 0.8106 for Model 1. For Model 2, the values are 0.9750, 0.95 and

0.85. The average training and validation accuracy are from best fold among 10 stratified

fold.

Fig. 5.5 and 5.6 shows Confusion Matrix and ROC of all 10 fold for Model 1. Confusion

Matrix is calculated for 4 class. A average of all confusion matrix are predicted in Fig. 5.7.

The ROC’s of all fold contains all classes ROC curve and their ’macro’ and ’micro’ average

curves. As ’micro’ curve gives better value, we showed all ’micro’ ROC curve of 10 folds in

Fig. 5.8.

Fig. 5.9 and 5.10 shows Confusion Matrix and ROC of all 10 fold for Model 1. Confusion

Matrix is calculated for 4 class. A average of all confusion matrix are predicted in Fig. 5.11.

The ROC’s of all fold contains all classes ROC curve and their ’macro’ and ’micro’ average

curves. As ’micro’ curve gives better value, we showed all ’micro’ ROC curve of 10 folds in

Fig. 5.12.

Table 5.2 shows the comparative analysis of our proposed models with the previous methods.

Our 1st Model obtain accuracy, precision, recall and f1-score of 81.06%, 84.24%, 86.80%
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Table 5.2: COMPARATIVE ANALYSIS WITH PREVIOUS STUDIES

Methods
Accuracy

(%)
Precision

(%)
Recall
(%)

F1-score
(%)

SVM

(19 WST Features) [13]
71.42 65.51 90.47 76.00

ResNetCNN

+

BILSTM [14]

74 49 39 -

Xception

+

BILSTM [14]

76 48 45 -

Proposed

Models

Model 1 81.06 84.24 86.80 85.50

Model 2 85.00 87.77 84.44 86.08

and 85.50%. Our 2nd Model obtain accuracy, precision, recall and f1-score of 85.00%,

87.77%, 84.44% and 86.80%. Both model gives better result than previos methods except in

recall. This analysis proves the robustness of the models.

5.4 Discussion

In this chapter, the results of our both models are described briefly. Maximum average accu-

racy for Hypertension classification was found by using hybrid model of 2 Timedistributed

CNN, 1 GRU and 3 dense layer with a 85.00% accuracy score. Our 2nd model of 3 CNN, 1

LSTM and 3 dense layer also gives good accuracy score of 81.06%.
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Figure 5.5: Confusion matrix of Model 1 for 10 folds.
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Figure 5.6: ROC of Model 1 for 10 folds.
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Figure 5.7: Average Confusion Matrix for Model 1
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Figure 5.8: Average ROC for Model 1
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Figure 5.9: Confusion matrix of Model 2 for 10 folds.
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Figure 5.10: ROC of Model 2 for 10 folds.
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Figure 5.11: Average Confusion Matrix for Model 2
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Figure 5.12: Average ROC for Model 2
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Chapter VI

Conclusions and Future Works

6.1 Summary

In this thesis, we present a CNN-LSTM-GRU-based Hypertension classification system from

PPG signals. We have considered the noises in the signals and use butterworth filter. We also

use z-normalization. We didn’t use any other feature extraction as our goal was to build a

hybrid model which will classify Hypertension. In our both models, Convolutional layer is

used as feature extractor. Then we use LSTM and GRU for classification as they are capable

of learning long-term dependencies. To avoid overfitting, we use stratified kfold cross vali-

dation. This gives us great test accuracy. Our 1st Model obtain average accuracy, precision,

recall and f1-score of 81.06%, 84.24%, 86.80% and 85.50%. Our 2nd Model obtain average

accuracy, precision, recall and f1-score of 85.00%, 87.77%, 84.44% and 86.80%. They are

comparatively better then other previous methods in classifying Hypertension.

6.2 Limitations

Though our proposed system is efficient, it has some limitations. This system’s performance

can be increased by bigger dataset.

6.3 Concluding Remarks

This study provided a method for predicting hypertension using Deep learning models. The

results of our approach are promising. utilizing CNN-LSTM-GRU models and PPG Signal.

It uses the signal to determine the 4 stages of Hypertension. Features are extracted from

the PPG signal by Convolutional layer. Finally, 2 models: CNN-LSTM and CNN-GRU are

constructed by employing stratified 10-fold cross-validation procedure. The effectiveness

of our suggested solution has also been evaluated in comparison to existing approaches,

demonstrating its applicability. We hope to favor the following methods in the future to
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further improve our work: larger data sets can be used, other deep learning methods can be

implemented for better accuracy

6.4 Recommendations For Future Research

This thesis work can be extended in several ways. The following includes some possible

areas that are recommended to extend the present work.

1. As our major goal is to present a model that will classify Hypertension without using

other features, one can use other features to improve this model. .

2. Further studies can be conducted by training bigger dataset as our dataset is small.

3. Many variation of CNN LSTM GRU can be implemented to improve accuracy.



47

References

[1] Fabian, V., Matera, L., Bayerova, K., Havlík, J., Křemen, V., Pudil, J., Sajgalik, P., and
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