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Abstract

The classification of motor imagery gives significant scientific insight into the neural pro-

cesses underlying motor control. Researchers can acquire a greater knowledge of how the

brain originates and controls voluntary movements by analyzing the patterns of brain activity

related to imagined movement. This understanding has the potential to guide the develop-

ment of novel therapies for neurological diseases that impact motor performance, such as

stroke and Parkinson’s disease. Using Artificial Neural Networks (ANNs), Deep Neural

Networks (DNNs), Bidirectional Long Short-Term Memory (Bi-LSTM), Random Forest,

and K-Nearest Neighbors (KNN) algorithms, we present comparative research of motor im-

agery classification of left and right-hand movement in this thesis. The objective of this study

is to evaluate the performance of these machine learning methods for classifying motor im-

agery EEG data, which are extensively employed in brain-computer interfaces (BCIs). The

dataset has been acquired from e ABSP lab of the Department of Biomedical Engineering at

KUET. Artificial Neural Networks (ANNs), Deep Neural Networks (DNNs), Bidirectional

Long Short-Term Memory (Bi-LSTM), Random Forest, and K-Nearest Neighbors (KNN)

algorithms have been applied to the acquired dataset. DNNs and Bi-LSTM performed better

than the other algorithms, with Bi-LSTM obtaining the greatest accuracy. This work con-

cludes with a detailed comparison of several deep learning methods for the classification

of motor imagery and highlights the potential of DNNs and Bi-LSTM for EEG-based BCI

applications. This study’s findings can give useful insights for future research toward the

development of efficient and accurate BCIs. This work concludes with a detailed compari-

son of several deep learning methods for the classification of motor imagery and highlights

the potential of DNNs and Bi-LSTM for EEG-based BCI applications. This study’s findings

can give useful insights for future research toward the development of efficient and accurate

BCIs.
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Chapter I

Introduction

1.1 Background

At the start of the twentieth century, EEG (Electroencephalography) was first ever pioneered

in humans and since then it has been useful for monitoring cerebral functioning in the hu-

man brain. Implementing Brain Computer Interface (BCI) systems using motor imaging

brain electrical signals was a mature application of using EEG signals. It was a great help to

understand the limb movement of the hand and feet which is very helpful for disabled people

who are unable to ensure themselves to perform their daily activities. An unfortunate reality

of EEG is that it is less adaptable as different individuals have different physiological func-

tions or even one individual in different mental states. Therefore, understanding EEG signals

further contributes to a significance for humankind. Many models have been developed in

this scope. However, it is still a challenging task to classify motor imaging EEG signals with

good speed [1].

1.2 Motivation

15 million individuals worldwide suffer from stroke each year. Despite extensive rehabilita-

tion programs, five million of these individuals remain chronically incapacitated and are no

longer able to care for themselves. Priority is given to lifesaving and thrombolytic treatments

in the first few days following an occurrence. However, patients should exercise as soon as

possible to accelerate the recovery and neural reorganization process. Various rehabilitation

methods are used for post-stroke therapy. One of them is Motor Imagery, a mental process

through which a person practices or replicates a certain movement with or without external

cues. MI was first intended to improve the performance of athletes and has since been used

in stroke rehabilitation programs to aid with motor recovery. It is a process in which a spe-

cific action is replicated in working memory without the need of actual movement. Studies

demonstrate that some of the same brain regions are active during MI sessions as during
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functional tasks [2]. Though there has been vast research to improve this phenomenon, it

is still very hard to understand the EEG signal. As feature extraction is one of the most

significant steps in EEG signal classification, we have mainly focused on this stage.

1.3 Problem Statement

When the blood circulation to a region of the brain is disrupted, a life-threatening medical

condition known as a stroke can occur. Strokes are a medical emergency requiring immediate

treatment. The sooner a patient receives treatment for a stroke, the lower the probability of

irreversible damage. During motor imagery also known as mental practice, mental imaging,

or mental rehearsal, the brain system is triggered when a person imagines doing a task or

moving their body without really doing so. Motor imaging has been applied after a stroke to

treat the loss of arm, hand, and lower extremity movement, as well as to improve performance

in daily living activities, boost mobility, and mitigate the effects of unilateral spatial neglect.

Motor imagery can be utilized during the acute, subacute, and chronic stages of recovery.

Motor imagery is beneficial on its own, but research indicates that it is most effective when

paired with physical activity. In fact, most of the earliest studies on motor imagery focused on

whether it improved athletic performance. According to imaging studies of the brain, same

brain areas are activated during motor imagery and actual movement. Moreover, according

to a study, motor imagery helps the brain reorganize its neural networks, which might benefit

in the retraining of motor abilities after a stroke [3].

1.4 Objectives

The fundamental purposes of our study are given below:

• Study the existing systems for motor imagery signal classification.

• Apply suitable filters for best signal pre-processing.

• Apply proper feature extraction technique.

• Apply deep learning algorithms.
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1.5 Scope of the Thesis

This system proposes a method to classify two class motor imagery EEG signals. This work

includes two-class MI events by imaginary movements of the left hand and right hand. It

combines linear and nonlinear features with advanced deep learning models.

Therefore, we develop a system where we can detect two motor imagery tasks: the imagina-

tion of movement of the left hand and right hand. For this thesis, we have limited our scope

to developing a binary class classification to detect left-hand and right-hand movements. We

did not inspect the scope of the system for multiclass classification.

1.6 Methodology

In this system, a suitable Butterworth band-pass filter (0.5–60 Hz) was employed to elim-

inate out-of-band noise. In addition, a 50 Hz notch filter was utilized to eliminate the re-

maining powerline noise. To make it easier to track future results, we normalized the entire

database. In the step of feature extraction, linear and nonlinear features were extracted from

EEG signals. The extracted linear features were Delta Average Band Power, Theta Average

Band Power, Alpha Average Band Power, Beta Average Band Power, Gamma Average Band

Power, and Theta To Beta Ratio (TBR). And the extracted nonlinear features were Sample

Entropy, Dispersion Entropy, and MultiScale Sample Entropy. With the selected features of

two-class motor imagery, EEG signals are classified using several machine learning algo-

rithms such as deep neural network (DNN), artificial neural networks (ANN), random forest,

and Bidirectional LSTM (BiLSTM).

1.7 Contributions

The main contributions of the thesis are as follows:

• Apply a suitable Butterworth band-pass filter and a 50 Hz notch filter for best signal

preprocessing.

• Extract linear and nonlinear features using proper feature extraction technique.
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• Apply deep learning algorithms, concerning the extracted features for binary class

classification.

• Apply hyperparameter tuning for improving the accuracy

1.8 Thesis Organization

Chapter II: Provides a discussion of the existing works as well as their performance

and the background study of this thesis work.

Chapter III: Describes the background and theoretical consideration.

Chapter IV: Provides methodology of our proposed system.

Chapter V: Illustrates results analysis and discussion of our study.

Chapter VI: We summarized the entire thesis, outlined our future plans, and con-

cluded the thesis in this chapter.
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Chapter II

Literature Review

In recent decades, the use of brain waves to control objects is a prevalent research direction.

Many types of research have been done and have been proposed with different methods

and established lots of efficient mechanisms to classify human body parts’ movement from

EEG signals. In the following sections, some considerable researches related to the task are

mentioned and summarized.

2.1 Utilizing Rényi min-entropy-based feature selection from wavelet

packet transformation

This paper proposes a novel feature selection method utilizing Rényi min-entropy-based al-

gorithm for achieving a highly efficient brain–computer interface (BCI). This study employs

a slightly modified version of the Rényi min-entropy-based technique for selecting features

from WPT coefficients. In comparison to the Shannon entropy and mutual information tech-

nique, this method selects features from a vast feature set using a unique kind of entropy.

Wavelet packet transformation (WPT) is frequently used to extract features from electroen-

cephalogram (EEG) recordings. In the case of multiple-class problems, classification accu-

racy is exclusively dependent on the selection of effective WPT features. Shannon entropy

and mutual information techniques are frequently used to pick features in traditional pro-

cedures. In this study, the author demonstrated that the suggested Rényi min-entropy-based

strategy for multiple EEG data categorization outperformed the standard approaches. For this

experiment, the BCI competition-IV dataset (including 4-class motor imagery EEG signal)

was utilized. Using WPT, the data were preprocessed and split into classes before feature ex-

traction. The Shannon entropy, mutual information, and Rényi min-entropy approaches were

then utilized for feature selection. Using the specified features and several machine learning
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techniques, four-class motor imagery EEG data were categorized using the selected charac-

teristics. Results indicated that the proposed strategy for multiple-class BCI was superior to

standard methods.

As part of the proposal, 4-class motor imagery EEG data from the BCI competitionIV were

acquired. Despite the fact that these signals were preprocessed, they were filtered using a 50-

Hz notch filter and then filtered again to remove the EOG effect using the EWICA toolbox,

as detailed in the preprocessing part of this paper. The EEG data were then evaluated for

dual-tree WPT. Since the EEG signals were split according to the schedule of the previously

described 4-class MI tasks, they were examined for feature extraction by WPT. In their work,

EEG signals were divided into five levels and four distinct characteristics (Energy, Variance,

Standard Deviation, and Waveform Length) were extracted using the WPT. According to the

claims made in their study, not all of those features were required for the classifier. Therefore,

correct features had to be selected from among them. The suggested study uses Rényi’s min-

entropy-based approach for feature selection to overcome the limitations of the conventional

technique.

From the results, it was found that the proposed method outperforms 18% and 6% increment

in classification accuracy (on average) than the Shannon entropy and mutual information

methods, respectively, in the case of the SVM classifier. On the other hand, applying the

random forest and MLP-ANN the classification accuracy could be increased up to 8% with

respect to mutual information methods [4].

2.2 Using K-Nearest Neighbor

This paper [5] proposes a classification method for motor imagery tasks-based brain com-

puter interface (BCI). The wavelet coefficients were utilized to extract features from the

motor imagery electroencephalographic (EEG) data, and the k-nearest neighbor classifier

was employed to categorize the pattern of left or right-hand imagery movement and rest.

At first, they extracted the signals of interest (the signal corresponding to the right/left-hand

motor imagery tasks and the signal corresponding to the relaxation) from the acquired signal

and then they performed a multiresolution wavelet analysis using those two types of mother

wavelet, Coiflet4, and Daubechies2. The components of the features matrix were selected
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from the wavelet coefficients of interest. This features matrix was computed for the training

set and the test set of the signals.

Classification was conducted between two categories: relaxation and imagined motion. They

determined the optimal value of k to optimize classification performance by employing the

Euclidean distance measure. The k value was searched in the interval between 1 and 5, using

a 1-step size. They classify all of the subjects, and the results are reported as a percentage

of precision. BCI2000 has several data conversion utilities, and a script to load BCI2000

data files directly into MATLAB. MATLAB was used to develop a k-NN classification pro-

gram. The k-NN classifier achieved higher classification accuracy than the LDA classifier

of the BCI2000 platform, as displayed at the conclusion of the testing paradigm. C3 and C4

channels exhibited the highest categorization rates.

The results obtained with the KNN classifier were better to those obtained with the BCI2000

software. The approach was applied to 20 participants, and the best classification perfor-

mance of the suggested method ranged between subjects from 68% to 91%. Significant

subject-to-subject variation in classification performance was observed; currently, there is

no optimal selection of the mother wavelet and k across all subjects.

The classifier used in BCI2000 can be improved to obtain better accuracy and must be subject

oriented [5].

2.3 Using Convolutional Neural Network Framework

In this paper [6], a transfer CNN framework based on VGG-16 is proposed for MI EEG

signal classification. It comprises a CNN model that has been pre-trained and a CNN model

that is utilized for MI classification. First, STFT was used to transform the raw EEG data

from the C3, C4, and Cz electrodes into time-frequency spectrum pictures.

On ImageNet, a VGG-16 CNN model was then pretrained. Finally, the target CNN model

for MI classification was fine-tuned on the target dataset. In this study, the target dataset

was comprised of converted EEG temporal frequency spectrum pictures. Due to the dis-

similarity between the target dataset used for fine-tuning and the ImageNet dataset used for

pre-training, only the early layers of the target CNN were frozen and the later layers were

fine-tuned. Experimental findings show that the suggested framework enhanced the accuracy
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and efficiency of EEG signal categorization in comparison to conventional approaches, such

as support vector machine (SVM), artificial neural network (ANN), and standard CNN.

EEG signals from the C3, C4, and Cz electrodes can be significantly changed by doing MI

activities, according to [7] and [8] . During MI tasks, there is a drop in amplitude in the mu

band (8-13 Hz) of these EEG signals, a phenomenon known as event-related desynchroniza-

tion (ERD). In contrast, there is an increase in amplitude in the beta band (13-30 Hz) due to

event-related synchronization (ERS). In consideration of this, STFT was applied to the signal

recordings from C3, C4, and Cz electrodes, and only the mu and beta frequency regions of

the resulting time-frequency spectra are kept. Furthermore, 4-14 Hz frequency bands were

utilized to represent the mu band and 16-32 Hz frequency bands were used to represent the

beta band since this yielded superior performance in their verification trials.

The proposed framework consisted of a pre-trained VGG-16 CNN model and a target CNN

model, where the pre-trained VGG-16 CNN model was used to extract universal features for

common image classification tasks and the target CNN model aimed to classify EEG signals

efficiently and accurately using the pre-trained VGG-16 CNN.

Despite the progress made in this article, two constraints must be addressed in the future. The

transferability of the different layers of the pre-trained CNN model has not been investigated

in this research. Even with GPU-accelerated computation, training the suggested framework

is still a time-consuming procedure [6].

2.4 Using PCA, Wavelet and Two-Stage Neural Network

This study [9] proposes a novel technique for classifying four-class MI EEG signals based

on the combined use of principal component analysis (PCA), wavelet packet transformation

(WPT), and a two-stage machine learning algorithm. From this proposed work, it had been

determined that not only is the extraction of novel features necessary, but also the configura-

tion of classifiers with an acceptable strategy was a worry. Although the feature extraction

method employing PCA-based wavelet packet transformation was an outstanding technique

for determining the features of the EEG signal, it failed to accurately identify the four-class

motor imagery signals. In contrast, the suggested two-stage classifier boosted classification

accuracy by an astounding 16.34% percent on average. This strategy was applicable to any
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classifier with more than two classes. Therefore, their proposal surpassed the usual BCI

implementation method.

Popular EEG signal feature extraction techniques include autoregressive (AR) approaches,

wavelet transformations (WT) methods, phase-space reconstruction approaches, CSP-based

methods, empirical mode decomposition, etc. Although WPT coefficients are commonly

utilized for EEG signal classification, WPT-based feature extraction has two significant lim-

itations for multiclass classification: organizing the features and selecting the bases. In this

paper [9], they presented a technique that employs a principal component analysis (PCA) to

decrease signal dimension, a wavelet packet transform (WPT) to extract its features, and a

two-stage artificial neural network (ANN) for identifying the signal’s lobe-origin and limb-

origin.

But one drawback of the proposed multi-stage training-based classifier is its time require-

ment for the training stage [9].

2.5 Improved BP Neural Network based recognition and analysis of MI

EEG Signal

The main purpose of this research [10] was to convert the individual motor-imagined EEG

signals into two-dimensional motion instructions on the computer screen and corresponding

mouse cursor movement control instructions.

In this article [10], weight-splitting technology was introduced to the classic BP neural net-

work algorithm based on an upgraded BP neural network algorithm. To overcome the fil-

tering problem, a non-linear mapping function of a conventional BP neural network was

employed, and to improve the whole BP algorithm, tiny weight particles were intelligently

trained by merging the particle swarm filter method. By combining the upgraded BP neural

network algorithm with particle swarm filter algorithm, the problem of poor signal-to-noise

ratio (SNR) and unclean filtering in EEG data processing caused by rapid weight degradation

in the classic BP method was resolved.

This paper’s [10] basic algorithm was the BP algorithm, and its related auxiliary algorithm
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was the particle cluster filtering algorithm placed in the hidden layer, which primarily han-

dled the filtering problem during the system identification phase. In terms of recognition

and analysis of motor imagery brain wave signals, the suggested algorithm outperformed the

conventional BP algorithm.

But in this work, the convergence and accuracy of the recognition and analysis algorithm for

motor imagery EEG still have a problem that cannot be acquired at the same time. [10].

2.6 Using of CNN with multilevel weighted feature fusion

In this research [11], the author used EEG motor imaging data to demonstrate the advantages

of extracting and merging multilevel convolutional features from distinct CNN layers, which

were abstract representations of the input at different levels. The CNN model developed here

could learn robust spectral and temporal characteristics from raw EEG data. The multilayer

feature fusion outperformed models that utilized only the last layer’s characteristics.

The author proposed a methodology for multilayer feature extraction and fusion for EEG

MI data using a CNN that had been pretrained as a feature extractor. The construction of

a robust feature representation for EEG signals utilizing information hidden in CNN layers.

Some blocks of convolutional and max pooling layers were followed by fully connected lay-

ers towards the conclusion of the CNN model’s layers. The first convolution consists of two

layers. They utilized two unique regularization techniques, namely dropout and batch nor-

malization. The optimal size of retrieved features for fusion was determined using weight-

based feature fusion. This suggested study achieved 74.5% accuracy, which is more than

existing approaches for the BCI dataset. However, the CNN-based multilayer feature fusion

algorithms have yet to be evaluated on other EEG datasets. [11].

2.7 Scope of Improvement in Existing Works

All these studies discussed so far have some significant contributions related to the classi-

fication of motor imagery EEG signals. But there are still areas of improvement in these

work studies. An overview of these researches with corresponding techniques, dataset, and

limitations have been depicted in Table. 2.1.
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Table 2.1: Brief Summary of the related work.

Authors Techniques Dataset Limitations
Roxana Aldea, Wavelet Co-efficient, BCI data recordings can be improved
Monica Fira, K-Nearest Neighbors to obtain better

Anca Laz ar [5] accuracy

Zhiwen Zhang, Convolutional Experimental motor Low computational
Feng Duan, Neural Network, imagery EEG data efficiency of WNN

Jordi Sole-Casals [12] Wavelet Neural and dataset III from (wavelets neural
Network BCI Competition II network)

Gaowei XU, Deep Transfer 2b from the Time-consuming
Xiaoang Shen, Convolutional BCI competition process
Sirui Chen[13] Neural Network and IV

Framework

Jamal F. Hwaidi, Deep Autoencoder Physionet Number of
Thomas M. Chen[14] and Convolutional dataset electrodes can be

Neural Network reduced even further
Approach

Nuri Korhan, Common Spatial BCI Competition Needed to
Zumray Dokur, Patterns and III dataset combine CNN

Tamer Olmez[15] Convolutinal 3a with the methods
Neural Networks specifically designed

for BCI tasks

Pawel Herman, Spectral approaches, datasets from Less practical
Girijesh Prasad, SVM, RFD, LDA two different in real-world
Thomas Martin BCI laboratories, BCI application

McGinnity, the Graz and ISRC
Damien Coyle [16]
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Chapter III

Theoretical Considerations

In this chapter, we review some of the theoretical concepts which helped us to develop the

methodology for our proposed system.

3.1 Electroencephalogram (EEG)

EEG stands for electroencephalography, which is a non-invasive method of measuring brain

activity. It works by recording the electrical activity of the brain through electrodes placed

on the scalp. These impulses are picked up by electrodes that are placed on the scalp and are

then amplified and recorded. The resulting EEG recording is a graph of the electrical activity

of the brain over time, which can be analyzed to reveal information about brain function.

EEG is commonly used in the diagnosis of neurological disorders such as epilepsy, as well as

for research into brain function and behavior, such as how the brain processes information,

responds to different stimuli, and generates consciousness. It can also be used to guide

brain-computer interfaces and other brain-computer interactions.

EEG can also be used in the field of brain-computer interfaces (BCI). BCI is a technology that

allows people to control devices or communicate with others using only their brain activity.

EEG is often used to provide the brain signals that are used to control these devices because

it is non-invasive and can be used to measure a wide range of brain activity.

It is important to note that EEG is not a perfect tool and has some limitations like the elec-

trodes placed on the scalp only provide information about the brain activity on the surface

of the brain and not in the deeper structures. Also, the signals recorded by EEG are quite

weak and are easily influenced by various factors such as muscle activity, eye movements,

and other types of noise.
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EEG recordings are typically represented as a graph, with the horizontal axis representing

time and the vertical axis representing the amplitude of the electrical activity being recorded.

The amplitude is usually measured in microvolts (µV) [17].

3.1.1 Types of Signal

The typical EEG recording is composed of several different types of waves, each of which

is associated with a different level of brain activity. There are five types of waves which are

shown in the below table 3.1:

Table 3.1: Frequency and Mental States of Waves.

Wave Frequency(Hz) Mental State
Delta (δ ) 0-4 Deep Sleep
Theta (θ ) 4-8 Drifting Thoughts, Dreams, Creativity
Alpha (α) 8-13 Calmness, Relaxation, Abstract Training
Beta (β ) 13-30 Highly Focused, Highly Alertness

Gamma (γ) >30 Simultaneous Process, Multi-Tasking

3.1.2 Delta Waves

Delta waves are under the frequency range of 0 – 4 Hz. Mental states associated with these

waves are deep sleep, coma or hypnosis, and sometimes awake. In an awake state, it is always

considered to be a pathological phenomenon. The higher the amplitude, higher serious the

problem is considered. These waves are decreased by age and are normally present in healthy

people in their awake state [17].

Figure 3.1: Delta Wave.
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3.1.3 Theta Waves

Theta waves are under the frequency range of 4 – 8 Hz. Mental states associated with these

waves are drifting thoughts, creative thinking, and unconscious materials. These waves ap-

pear in the central, temporal, and parietal parts of the head. These waves are normally present

in healthy people while they are in deep sleep [17].

Figure 3.2: Theta Wave.

3.1.4 Alpha Waves

Alpha waves are under the frequency range of 8 – 13 Hz. Mental states associated with these

waves are relaxed and calm states. These waves appear on the back side of the head and

occipital area of the brain. These waves are of high amplitude as compared to others. This

can be observed while the subject is awake and calm. Sometimes, these waves interfere with

µ-rhythm. These waves are normally present in people while they are calm and relaxed being

in an awake state [17].

Figure 3.3: Alpha Wave.

3.1.5 Beta Waves

Beta waves are under the frequency range of 13 – 30 Hz. Mental states associated with these

waves are highly focused and alert, such as during deep thinking and concentration. Beta
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waves are having a large band of frequency as compared to others. These waves appear at

the front side of the head and central area of the brain [17].

Figure 3.4: Beta Wave.

3.1.6 Gamma Waves

Gamma waves are under the frequency range of 30 Hz. Mental states associated with these

are simultaneous work and multitasking. These waves are hard to notice due to their very

low amplitude. These waves appear in each part of the brain [17].

Figure 3.5: Gamma Wave.

3.1.7 Types of Signal based on analysis method

There are several types of EEG figures that can be generated from EEG recordings, depend-

ing on the specific analysis method used. Here are a few examples:

• Time series: This is a simple graph that shows the electrical activity of the brain

over time. The x-axis represents time, and the y-axis represents the amplitude of the

electrical activity. This figure can be used to visualize changes in brain activity over

time, such as changes in response to a specific stimulus or changes in activity during

different stages of sleep.
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• Spectral analysis: This figure shows the power (or amplitude) of different frequen-

cies of brain activity. The x-axis represents frequency, and the y-axis represents power.

This figure can be used to visualize changes in brain activity across different frequen-

cies, such as changes in alpha or beta activity.

• Topographic map: This is a two-dimensional map that shows the distribution of brain

activity across the scalp. Each point on the map represents an electrode location, and

the color or shading at each point indicates the amplitude of the electrical activity at

that location. This figure can be used to visualize differences in brain activity across

different regions of the scalp, such as changes in activity in the left versus the right

hemisphere.

3.2 Motor imagery

Motor imagery is the mental process of rehearsing or simulating a certain movement. It has

been used as a study paradigm in cognitive neuroscience and cognitive psychology to explore

the content and organization of covert processes (i.e. unconscious) that precede the execution

of an action. In some medical, musical, and athletic circumstances, mental rehearsal can be

as successful as pure physical rehearsal (practice) of action when combined with physical

rehearsal. Motor imaging is a dynamic condition in which an individual replicates a physical

action in his or her mind. This sort of phenomenal experience suggests that the individual

feels as though they are executing the action. It relates to what sports psychologists refer to

as internal imagery (or first-person perspective).

Mental practice refers to the use of visuo-motor imagery to enhance motor performance.

Without physical movement, visuo-motor imagery involves the use of one’s mind to recreate

an activity. It has gained prominence due to the importance of images in improving athletic

and surgical performance. Numerous functional neuro-imaging investigations have shown

that motor imagery is connected with the particular activation of brain circuits involved in

the earliest stage of motor control (i.e., motor programming). This circuit consists of the

supplementary motor area, primary motor cortex, inferior parietal cortex, basal ganglia, and

cerebellum. Such physiological evidence provides substantial support for the notion that

imaging and motor preparation share brain processes. During motor imagining and real
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motor performance, measurements of cardiac and respiratory activity demonstrated a cor-

relation between heart rate and lung ventilation, and the level of imagined exertion. Motor

imagery engages the motor pathways. During motor imagining, muscular activity generally

rises relative to resting levels. When this is the case, EMG activity tends to be proportionate

and restricted to the muscles involved in the mimicked motion. [18].

3.2.1 Effects

Motor imaging is currently widely used as a therapy to improve motor learning and stroke

patients’ neurological rehabilitation. Musicians have shown their usefulness.

• On motor learning: Motor imagery is a recognized method of training for athletes.

Typical training includes a warm-up, relaxation, and focus, followed by mental mod-

eling of the specific exercise.

• In neurological rehabilitation: Motor imagery increases the effects of traditional

physiotherapy and occupational treatment. A recent analysis of four randomized con-

trolled studies suggests that there is limited evidence to demonstrate the added advan-

tage of motor imagery above traditional physiotherapy alone for stroke patients. The

authors found that motor imagery looks to be an appealing therapy option, as it is sim-

ple to learn and use, and the intervention is neither physically taxing nor damaging.

Consequently, motor imagery may provide further benefits to patients.

• Motor imagery can serve as a substitute for imagined behavior to produce similar

cognitive and behavioral consequences. The frequent simulated consumption of food,

for example, can decrease subsequent actual consumption of that item.

3.2.2 Simulation and understanding mental state

Motor imagery is similar to the cognitive and social neuroscience concept of simulation,

which is used to explain many processes. A participant in simulation may relive his own

prior experience to derive from it enjoyable, motivating, or just informative aspects. The

simulation hypothesis asserts that thinking consists of simulated interaction with the envi-

ronment and is founded on the following three fundamental assumptions:
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• Simulation of actions: We can activate motor structures of the brain in a way that

resembles activity during a normal action but does not cause any overt movement.

• Simulation of perception: Imagining perceiving something is essentially the same as

actually perceiving it, only the perceptual activity is generated by the brain itself rather

than by external stimuli.

• Anticipation: There exist associative mechanisms that enable both behavioral and

perceptual activity to elicit other perceptual activity in the sensory areas of the brain.

Most importantly, a simulated action can elicit perceptual activity that resembles the

activity that would have occurred if the action had been performed.

Mental stimulation may also serve as a representational method for comprehending one-

self and others. Philosophy of mind and developmental psychology both use simulation to

explain our ability to mentalize, i.e., to comprehend the mental states (intentions, wants,

emotions, and beliefs) of others (aka theory of mind). In this context, the fundamental con-

cept of simulation is that the attributor employs his psychological resources to imitate the

mental activity of the target. The individual imagines herself/himself performing the same

action to comprehend the mental state of another when observing the other’s behavior; this

is a covert simulation that does not result in overt behavior. Critical to the simulation theory

of mind is the notion that to attribute mental states to others, an attributor must set aside her

mental states and substitute the target.

3.3 Techniques to Classify EEG Data

Various techniques are used to classify EEG data and some of them are successful but lack

in accuracy. However, the following techniques we have considered for our work:

• Deep Neural Network (DNN)

• Artificial Neural Network (ANN)

• Random Forest Regressor (RFR)

• K-Nearest Neighbor(KNN)

• Bidirectional Long Short Term Memory (BiLSTM)
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3.3.1 Deep Neural Network (DNN)

Deep learning is a machine learning method that enables computers to learn by example in

the same way that humans do. Deep learning models can attain state-of-the-art accuracy,

even surpassing human performance in some cases. These models are sometimes referred to

as deep neural networks because most deep learning approaches use neural network designs.

The term “deep” refers to the number of hidden layers in the neural network. Deep neural

networks can have up to 150 hidden layers, whereas traditional neural networks only have

2−3. Large sets of labeled data and neural network architectures that learn features directly

from the data without the requirement for manual feature extraction are used to train deep

learning models.

Biological Neuron to Artificial Neuron

Figure 3.6: Biological neuron.

The relevance of a biological neuron with the concept of the artificial neuron is stated in

[19]. A neuron (or nerve cell) is a particular biological cell that has the ability to process

information and is the essence of life. A biological neuron in sketch form is depicted in

Figure. 3.6. The axon and dendrites are two types of out-reaching tree-like branches that

make up the cell body or soma. The cell body has a nucleus that stores information about

inherited features and a plasma that houses the molecular machinery that allows the neuron to

produce the material it requires. A neuron’s dendrites (receivers) receive signals (impulses)

from other neurons and transmit signals generated by its cell body via the axon (transmitter),

which eventually forks into strands and substrands. Synapses are located at the ends of these

strands. A synapse is a basic structure and functional unit that connects two neurons (an
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axon strand from one neuron and a dendrite from another). When an impulse reaches the

synapse’s terminal, neurotransmitters are released. The neurotransmitters diffuse across the

synaptic gap, enhancing or inhibiting the receptor neuron’s own inclination to emit electrical

impulses, depending on the type of synapse. The signals going through the synapse can

change its effectiveness, allowing synapses to learn from the activities in which they engage.

This reliance on history functions as a memory, and it is thought to be the source of human

memory.

Generalized Model of an Artificial Neuron

Figure 3.7: Generalized model of an artificial neuron.

A generalized type of artificial neuron is depicted in Figure. 3.7, which includes a set of con-

necting weights, a summing unit, and an activation function. Each input signal is weighted,

or multiplied by the weight value of the associated input (similar to the synaptic strength of

real-life neuron connections). As a result, the summing unit’s output is a mixture of weighted

input signals plus an externally provided bias. Depending on whether the bias is positive or

negative, it has the effect of boosting or decreasing the net input of the activation function.

Finally, the activation function is responsible for a neuron’s output. The output of a neuron

before passing to an activation function can be expressed mathematically as follows:

z = ∑
i

wixi +b (3.1)
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where, wi, xi and b denote weights, feature vector and bias to the neuron respectively. If φ(·)

represents the activation function, the final output will be as follows:

y = φ(z) (3.2)

Activation Function

An Activation Function determines whether or not a neuron is activated. It uses simpler

mathematical operations to determine whether the neuron’s input to the network is essential

or not throughout the prediction phase. It specifies how a node or nodes in a network layer

turn the weighted sum of the input into an output. The activation function chosen has a sig-

nificant impact on the neural network’s capabilities and performance, and different activation

functions may be utilized in different portions of the model.

An activation function is used to give a neural network more non-linearity. Without the

activation functions, a neural network will merely execute a linear transformation on the

inputs using the weights and biases. Because the composite of two linear functions is a

linear function, it doesn’t matter how many hidden layers we add to the neural network; all

layers will act the same. So, learning any complex task would be impossible without an

activation function.

i. Rectified Linear Unit (ReLU)

Figure 3.8: Rectified linear unit.
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The ReLU (Rectified Linear Unit) activation function is a commonly used activation function

in deep neural networks (DNNs) due to its simplicity, speed, and effectiveness.

The function is defined as follows:

f (x) = max(0,x), where x is the input (3.3)

It returns 0 if the input is negative and the input itself if positive. This piecewise linear func-

tion is not differentiable at x=0, but that does not impact training in DNNs as the optimization

algorithm used does not rely on the derivative of the activation function.

ReLU has been used in successful DNN models, including AlexNet and VGG, and has been

found to be effective in tasks such as image classification and speech recognition. However,

it has the limitation of the "dying ReLU" problem, where a neuron can become inactive and

remain so, leading to reduced performance.

ii. Tanh

The hyperbolic tangent function, or tanh, is a common activation function used in artificial

neural networks. It is a smooth, nonlinear function that maps its input to the range of -1 to 1.

Figure 3.9: Tanh Activation Function.

The formula for the tanh function 3.4 is:

tanh(x) =
ex − e−x

ex + e−x
(3.4)
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where e is the mathematical constant e (approximately equal to 2.71828) and x is the input

to the function.

The tanh function is similar to the sigmoid function, which also maps its input to a range

between 0 and 1, but the tanh function is centered at 0, meaning that its outputs are symmetric

around 0. This property can be useful in certain types of neural networks.

One advantage of the tanh function over the sigmoid function is that it has a steeper gradient

around the origin, which can help speed up learning in neural networks. However, the tanh

function can suffer from the same vanishing gradient problem as the sigmoid function when

the inputs to the function become very large or very small, which can make it difficult to

train deep neural networks using this activation function.

Overall, the tanh function is a commonly used activation function in neural networks, but its

use may depend on the specific problem and architecture being used.

iii. Sigmoid

Sigmoid function is used for binary classification. It introduces non-linearity to the output

layer.

Figure 3.10: Sigmoid Function.

The function is defined as follows:

f (z) =
1

1+ e−z (3.5)
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Other than these activation functions, there are many other activation functions. Among

them, Softmax is also a very popular activation function and is used to get probability distri-

bution over predicted output classes and in multinomial logistic regression. In the proposed

CNN model, ReLU activation function is used in the hidden convolutional layer and Sigmoid

is used in the dense layer to get the binary classification.

Multilayer Feed-Forward Network

Figure 3.11: Multilayer feed-forward network.

The most prevalent type of artificial neural network (NN) architecture for solving real-world

issues is a multilayer feed-forward neural network with several layers of neurons. The typical

construction of this network is depicted in Figure. 3.11. The artificial neurons, or units, are

arranged in layers, with each unit in a layer having all of its inputs connected to the units of

the preceding layer (or to the inputs from the external world in the case of the units in the first

layer), but none to the units in the same layer to which it belongs. The layers are stacked one

after another, with an input layer, many intermediate layers, and an output layer in between.

The intermediate layers, often known as hidden layers, have no input or output to the outside

world. In general, the input layer is thought of as a signal distributor from the outside world.

There are no restrictions on the number of hidden layers or neurons in the hidden layers. The

objective of a hidden layer is to improve a network’s functional versatility. The number of

neurons in the hidden layer should grow in tandem with the intricacy of the link between the

input data and the intended output.
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Despite the fact that ANN is capable of simultaneous feature extraction and classification,

it is still challenging to directly apply ANN to raw EEG data due to their susceptibility to

measurement noise and interferences [20].

Deep Neural Network Training

Figure 3.12: A three layer feed-forward network.

A good architecture as well as sufficient weight set values are required to perform a NN

for a specific task. As previously said, the architecture of the network is mostly determined

by the problem. However, in the field of NN, obtaining a weight set is critical and difficult

because the same architecture performs multiple functions for different weight values [19].

The weight values may assign directly for extremely small problems (such as ordinary binary

logic), but this is impractical for huge real-world situations. In this aspect, ANN has a natural

proclivity for storing experimental knowledge in synaptic weights, which it acquires through

a learning process from its surroundings [21].

The goal of NN learning is to change the synaptic weights of the network so that after learn-

ing, it correctly predicts a specific pattern from its input set of features [22]. Training is

the method utilized to carry out the learning process. The goal of a training algorithm is to

adjust the synaptic weights of a NN in an ordered method to achieve a particular target, be-

cause synaptic weights hold the information. For multi-layered NNs, back-propagation (BP)

[23] is the most prevalent NN training approach. When output errors propagate from the

output layer to the input layer in BP, synaptic weights are changed. To use BP, a network’s

connection weights are set to random values in a small range.
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To demonstrate the BP method, we are considering the most popular three-layer NN archi-

tecture, as shown in Figure. 3.12. A forward pass and a backward pass are the two basic steps

in the BP algorithm. In the forward pass, an example or pattern’s input values are presented

to the network, actual outputs are measured from the output layer by passing responses from

the input layer to the output layer through the hidden layer, and then the pattern’s error is

calculated based on the pattern’s actual output and desired output. The connection weights

are modified in the backward pass based on the estimated error. The hidden and output layer

weights are modified first, followed by the input and hidden layer weights.

According to BP learning, if a weight w transmits input x to a neuron and f is the neuron’s

output, the weight correction (w) for that weight is provided by the equation:

∆w = η δ x (3.6)

Here, η denotes the learning rate and δ refers to the local gradient of the neuron. Learning

speed is influenced by the learning rate, which simply displays the proportional size of weight

changes. Because of its high value, an update due to one example might significantly modify

a weight value’s oscillation with regard to others. In typically, the value of η takes into

account a modest range of values, such as between 0.1 and 0.3.

The output unit’s δo and hidden unit’s δh local gradients are specified as follows:

δo =− ∂e
∂ fo

∂ fo

∂xo
(3.7)

δh = ∑
o

δowo
∂ fh

∂xh
(3.8)

Here, the net input (weighted total) and output of an output neuron are represented by xo

and fo, respectively. The discrepancy between the desired output and the actual response is

defined as e. The following equation can be used to define the error function for the n-th

training pattern.

e(n) =
1
2
(d(n)− fo(n))2 (3.9)

Here, d(n) is the desired output, while fo(n) is the actual output. The BP algorithm requires

the partial derivative of (3.9) with regard to the output fo(n) to update weights, which is
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derived as follows.
∂eo(n)
∂ fo(n)

=−(d(n)− fo(n)) (3.10)

The local gradient of the output unit can be rewritten as follows:

δo =


(d(n)− fo(n)), if xo(n)≥ 0,

(d(n)− fo(n))
fo(n)
xo(n)

, otherwise.
(3.11)

and the local gradient for the hidden unit becomes: The local gradient of the output unit can

be rewritten as follows:

δh =


∑o δowo, if xh(n)≥ 0,
fh(n)
xh(n)

∑o δowo, otherwise.
(3.12)

The NN’s operational flowchart is shown in Figure. 3.13[19]. The forward pass from input

to actual output is shown in the upper portion of the figure, followed by error. The local

gradient and weight correction generation from the output layer and input layer is shown in

the lower section. Every arrow points to the component that must be used to calculate it.

According to (3.11), the local gradient of the output layer (i.e., δo) necessitates actual output

fo, net input (weighted total) xo and desired output do. Local gradient of hidden layer (i.e.,

δh) requires hidden layer output fh, net input (weighted total) of hidden neuron xh, local

gradient of output layer (i.e., δo), and connecting weights of individual hidden and output

nodes wo, according to (3.12).

The number of neurons in the hidden layer in a NN architecture is determined by the problem

difficulty. Additionally, many hidden layers with different numbers of neurons could be used

for a better result. In that instance, additional steps will be taken to update the NN by

computing local gradients of more hidden layer units, but the calculations will be done in a

similar manner. Assuming the architecture of Figure. 3.12 has two hidden layers. In that
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Figure 3.13: Flow chart of operations of a neural network.

case, the local gradient for the second hidden layer would be as follows:

δh2 =


∑o δowo, if xh2(n)≥ 0,
fh2(n)
xh2(n)

∑o δowo, otherwise.
(3.13)

and the local gradient for the first hidden layer would be as follows

δh1 =


∑h2 δh2wh2, if xh1(n)≥ 0,
fh1(n)
xh1(n)

∑o δowo, otherwise.
(3.14)

Loss function

How well an algorithm reflects a dataset is determined by its loss function. The loss func-

tion will return a bigger value if the forecasts are entirely inaccurate. If the projections are

reasonably correct, the output will be lower. Adjusting the different layers and parameters of

the CNN model in an effort to enhance the model can disclose whether or not it is heading

in the right direction based on the loss function.

In a deep neural network (DNN) for binary classification, binary cross-entropy loss is the

most popular loss function. This loss quantifies the gap between the projected probabil-

ity distribution and the actual label distribution. Minimizing this loss function using opti-

mization techniques such as stochastic gradient descent (SGD) optimizer trains the DNN to
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accurately anticipate the class label.

Optimizer

Optimizers are utilized to modify the neural network’s properties, such as weights and learn-

ing rate, to minimize losses. Finding the appropriate weights for a deep learning model is a

challenging task due to the model’s often millions of parameters. The application requires

the selection of a suitable optimization algorithm. Optimizers are utilized to resolve opti-

mization issues by reducing function parameters. Therefore, the accuracy is improved and

the overall loss is diminished.

Adam

Adaptive moment estimation [24] is the source of the Adam optimizer. This optimization

strategy is an extension of stochastic gradient descent for updating network weights through-

out training. Adam optimizer, unlike SGD, alters the learning rate at each network weight

independently, rather than maintaining a single learning rate throughout training. Adam op-

timizers inherit both the Adagrad and the RMS prop algorithms. Adam adjusts learning rates

by using the second moment of the gradients, as opposed to the first moment (mean) as in

RMS Prop.

Early stopping

Early stopping is a type of regularization used in machine learning to reduce overfitting while

training a classifier using an iterative method such as gradient descent. These strategies

improve the classifier with each iteration so that it better fits the training data.

If there are too many epochs, the model may be overfit to the training data. In contrast, if

the number of epochs is insufficient, the resulting model will be underfitted. Early stopping

permits the specification of an arbitrary number of training epochs and the termination of

training once the model’s performance on a hold-out validation dataset ceases to improve.

3.3.2 Random Forest Regressor (RFR)

A Random Forest Regressor [4] is a supervised machine learning algorithm so it requires la-

beled data to train and make predictions which is used for regression tasks. It is an ensemble
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method, which means that it combines the predictions of multiple "base" models (such as

decision trees) to create a more accurate and robust final prediction.

In Random Forest Regressor, the base models are decision trees. The algorithm works by

training multiple decision trees on random subsets of the data. Each decision tree makes a

prediction, and the final prediction is the average (or majority vote) of the predictions made

by all of the decision trees. This helps to reduce the overfitting problem that can occur when

using a single decision tree.

The following steps explain the working of Random Forest algorithm:

Step 1: Select random samples from a given data or training set.

Step 2: This algorithm will construct a decision tree for every training data.

Step 3: Voting will take place by averaging the decision tree.

Step 4: Finally, select the most voted prediction result as the final prediction result.

The steps of the working of Random Forest algorithm is depicted in the below figure 3.14:

Figure 3.14: Steps of Random Forest.

The random forest regressor has a number of parameters that can be tuned to improve its

performance, such as:

• The number of decision trees in the forest
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• The maximum depth of each decision tree

• The minimum number of samples required to split an internal node

• The minimum number of samples required to be at a leaf node

Random Forest Regressor is considered to be a powerful and accurate algorithm, and it is

widely used in a variety of applications such as stock market prediction, sales forecasting

and climate modeling.

3.3.3 K-Nearest Neighbour (KNN)

K-NN is a basic supervised learning method [25] that classifies a sample based on the ma-

jority vote of its neighbors, — in other words, the sample is assigned to the class with the

highest frequency among its k nearest neighbors. In k-NN, distance metrics are utilized to

compute the distance between new and existing samples in a dataset.

In KNN, the value of K is a user-defined parameter and can be chosen based on the spe-

cific requirements of the problem. A smaller value of K implies a more complex decision

boundary and a higher value of K implies a smoother decision boundary.

KNN is a simple algorithm that is easy to implement and can be useful in many real-world

applications such as image classification, speech recognition, and anomaly detection. How-

ever, it can be computationally expensive and may not work well when the number of features

is large or when the data is highly dimensional.

3.3.4 Long Short Term Memory (LSTM)

Long Short Term Memory Networks is an advanced RNN, a sequential network, that allows

for the persistence of information. It is capable of resolving the vanishing gradient problem

encountered by RNN. For permanent memory, a recurrent neural network, also known as

RNN, is utilized. As a result of the diminishing gradient, RNNs are incapable of remem-

bering long-term dependencies. LSTMs are explicitly intended to prevent difficulties with

long-term dependencies [26].
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LSTM Architecture

At a high-level LSTM works very much like an RNN cell. Here is the internal functioning

of the LSTM network. The LSTM consists of three parts, as shown in the figure 3.15 below

and each part performs an individual function.

Figure 3.15: Simple LSTM Architecture.

The first part chooses whether the information coming from the previous timestamp is to be

remembered or is irrelevant and can be forgotten. In the second part, the cell tries to learn

new information from the input to this cell. At last, in the third part, the cell passes the

updated information from the current timestamp to the next timestamp. These three parts

of an LSTM cell are known as gates. The first part is called Forget gate, the second part is

known as the Input gate and the last one is the Output gate which depicted in figure 3.16.

Figure 3.16: Simple LSTM Architecture with Three Gates.

Just like a simple RNN, an LSTM also has a hidden state where Ht−1 represents the hidden

state of the previous timestamp and Ht is the hidden state of the current timestamp. In

addition to that LSTM also have a cell state represented by Ct−1 and Ct for previous and
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current timestamp respectively. Here the hidden state is known as Short term memory and

the cell state is known as Long term memory. Refer to the following image. The following

figure 3.17 refers:

Figure 3.17: Simple LSTM Architecture with Hidden State and Short
State.

It is interesting to note that the cell state carries the information along with all the timestamps.

Forget Gate

In a cell of the LSTM network, the first step is to decide whether we should keep the in-

formation from the previous timestamp or forget it. Here is the equation 3.15 for forget

gate.

ft = σ(xt ∗Ut +Ht−1 ∗Wf ) (3.15)

In the equation here,

xt: input to the current timestamp

U f : weight associated with the input

Ht−1: The hidden state of the previous timestamp

Wf : It is the weight matrix associated with hidden state

Later, a sigmoid function is applied over it. That will make ft a number between 0 and 1.

This ft is later multiplied with the cell state of the previous timestamp as shown in below

3.16 and 3.17.

Ct−1 ∗ ft = 0 .....i f ft = 0 ( f orget everything) (3.16)

Ct−1 ∗ ft =Ct−1 ..... ft = 1 ( f orget nothing) (3.17)
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If ft is 0 then the network will forget everything and if the value of ft is 1 it will forget

nothing.

Input Gate

Input gate is used to quantify the importance of the new information carried by the input.

Here is the equation 3.18 of the input gate:

it = σ(xt ∗Ui +Ht−1 ∗Wi) (3.18)

In the equation here,

xt: Input at the current timestamp t

Ui: weight matrix of input

Ht−1: A hidden state at the previous timestamp

Wi: Weight matrix of input associated with hidden state

Again we have applied sigmoid function over it. As a result, the value of I at timestamp t

will be between 0 and 1.

Nt = tanh(xt ∗Ut +Ht−1 ∗Wc) (new in f ormation) (3.19)

Now the new information that needed to be passed to the cell state is a function of a hidden

state at the previous timestamp t-1 and input x at timestamp t. The activation function here

is tanh. Due to the tanh function, the value of new information will between -1 and 1. If the

value is of Nt is negative the information is subtracted from the cell state and if the value is

positive the information is added to the cell state at the current timestamp. However, the Nt

won’t be added directly to the cell state. Here is the updated equation 3.20.

Ct = ( ft ∗Ct−1 + it ∗Nt) (updating cell state) (3.20)

Here, Ct−1 is the cell state at the current timestamp and others are the values we have calcu-

lated previously.
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Output Gate

Here is the equation 3.21 of the Output gate, which is pretty similar to the two previous gates.

ot = σ(xt ∗Uo +Ht−1 ∗Wo) (updatingcellstate) (3.21)

It’s value will also lie between 0 and 1 because of this sigmoid function. Now to calculate

the current hidden state we will use Ot and tanh of the updated cell state. As shown below in

equation 3.22:

Ht = ot ∗ tanh(Ct) (3.22)

It turns out that the hidden state is a function of Long term memory (Ct) and the current

output. If it is needed to take the output of the current timestamp the SoftMax activation on

hidden state Ht is applied.

Out put = So f tmax(Ht) (3.23)

Here the token with the maximum score in the output is the prediction. The below figure

3.18 is the more intuitive diagram of the LSTM network.

Figure 3.18: Intuitive LSTM Architecture.
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3.3.5 Bi-directional long short term memory (Bi-LSTM)

Bidirectional long-short term memory is the process of making any neural network have

the sequence information in both directions backwards (future to past) or forward (past to

future).

In bidirectional, our input flows in two directions, making a bi-lstm different from the regular

LSTM. With the regular LSTM, we can make input flow in one direction, either backwards

or forward. However, in bi-directional, we can make the input flow in both directions to

preserve the future and the past information.

Figure 3.19: BiLSTM Architecture.

In figure 3.19, it can be seen that the flow of information from backward and forward layers.

BI-LSTM is usually employed where the sequence to sequence tasks are needed. In a bi-

LSTM, there are two separate LSTM layers, one processing the sequence in the forward

direction and another processing it in the reverse direction. The hidden states of these two

LSTMs are then concatenated and used as the final representation of the sequence. This

allows the network to consider both past and future context when making predictions.

Additionally, LSTMs have a memory cell that can preserve information over a long period of

time and gates that control the flow of information into and out of the cell, making them well-

suited to handle sequences where dependencies between elements span many time steps.

Bi-LSTMs have proven to be effective in many NLP tasks and are widely used in state-of-

the-art models. However, they can be computationally expensive and challenging to train, so

selecting the appropriate architecture and fine-tuning hyperparameters is important for good

performance.
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Chapter IV

Methodology

In this chapter, We address a classification method to classify left or right hand imagery

movement. After obtaining data, we pre-processed it to remove unnecessary noise. Then we

extracted time domain and frequency domain features by using the proper feature extraction

method. After extracting the features we classified the data using deep learning models.

The workflow for the task can be separated into 4 major parts:

(a) Data Acquisition

(b) Data Pre-processing

(c) Feature Extraction and

(d) Modeling and classification

The overall system for the study is depicted in Figure 4.1:
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Figure 4.1: Workflow of the thesis (a)The steps of the training the
model from the raw EEG signal and (b) the testing phase with the ANN-

based predictive model.

4.1 Data Acquisition

According to the guidelines of the Edinburg Handedness Inventory, data was collected from

2 physically fit male volunteers (age = 21±1.5) who were right-handed. In addition, each

subject’s physical history is devoid of muscle discomfort, mental disorders, and neurological

diseases. Before any data was collected, each participant gave verbal permission, and the

whole experiment was explained to them orally. The experiment followed the Helsinki Dec-

laration. The data acquisition techniques were done in the ABSP lab of the Department of

Biomedical Engineering at KUET. For EEG data gathering from the scalp, the 9-channel B-

AlertX10 system was utilized, which enabled wireless data acquisition without hair removal.

Figure Fig. 4.2 shows the procedure for data collection utilized in this study. The EEG data

Figure 4.2: Schedule of the data acquisition protocol.

was obtained from all individuals over the course of four sessions, with each subject under-

going five trials per session. A subject participated in 20 trials of a certain class in total. The

data set contains two types of motor-imaginary data: right-hand imagery movements and

left-hand imagery movements. The data collection sampling rate was 256 Hz [27].
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4.2 Data Pre-processing

As our raw acquired signals were the fusion of both signal and noise, it is necessary to pre-

process the dataset before feeding the models to get a better outcome. Pre-processing of the

dataset for EEG signals includes many steps. The following steps are used to pre-processed

the EEG dataset:

Step 1: The data is sampled at the rate of 256 Hz.

Step 2: As left and right hand movement typically include the central electrodes C3 and C4

as well as electrodes over the motor cortex F3 and F4, we remove the data of unnecessary

channels from the raw dataset. The detailed positions of the channels are given in figure 4.3.

Step 3: A suitable Butterworth band-pass filter (0.5–60 Hz) is employed to eliminate out-of-

band noise from the dataset.

Step 4: The remaining line noise around 50 Hz is eliminated using a notch filter.

Step 5: The high-frequency noise is reduced using a median filter with a window size of 3

samples

Step 6: The EEG signal is filtered using a moving average filter with a window size of 3

samples to further smooth the signal.

Step 7: The entire database has been normalized.

Figure 4.3 depicts the positions of the channels for left hand and right hand movement:

Figure 4.3: Filtered EEG data after step-6.
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4.3 Feature Extraction

In the step of feature extraction, linear features (Delta Average Band Power, Theta Average

Band Power, Alpha Average Band Power, Beta Average Band Power, Gamma Average Band

Power, Theta To Beta Ratio(TBR)) and nonlinear features (Sample Entropy, Dispersion En-

tropy, MultiScale Sample Entropy) are extracted from EEG signals.

4.3.1 Linear Feature

EEG signals are typically divided into five frequency bands: Delta (0.5-4 Hz), Theta (4-8

Hz), Alpha (8-13 Hz), Beta (13-30 Hz), and Gamma (30-100 Hz). These frequency bands

have been associated with specific brain states and functions.

On the basis of the Kaiser window, five Finite Impulse Response (FIR) filters are created to

split the preprocessed signals into five frequency subbands. Then we compute the average

band power of the mentioned bands using bandpower(). The bandpower function computes

the average power of a signal within a specific frequency band. The formula for the band-

power is defined as:

bandpower(x) =
1

length(x)
·

length(x)

∑
i=1

|xi|2 (4.1)

Then we compute theta to beta ratio(TBR). TBR (Theta to Beta Ratio) is calculated as the ra-

tio of average power in the Theta band to the average power in the Beta band. The calculation

is as follows:

TBR = abpTheta./abpBeta (4.2)

where abpTheta is the average power in the Theta band and abpBeta is the average power in

the Beta band.

All these features are frequency domain features

4.3.2 Non-linear Feature

Here we extract three nonlinear features (Sample Entropy, Dispersion Entropy, and Mul-

tiScale Sample Entropy). Sample entropy of the preprocessed signal is calculated using

SampEn function which takes three inputs:
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• data : the input time series data

• m : the embedding dimension

• r : the tolerance value

Dispersion Entropy is calculated using DispEn function. The DispEn function calculates

the Dispersion entropy (RDE) of a time series signal (Sig) using one of several different

discretization methods (’linear’, ’kmeans’, ’ncdf’, ’finesort’, ’equal’). Additional optional

parameters include the embedding dimension (m), delay time (tau), number of discretiza-

tion bins (c), logarithmic base (Logx), normalization flag (Norm), and discretization type

(Typex). The function first discretizes the input signal based on the specified method. Then

it forms an embedding matrix with m-dimensional lagged vectors and calculates the RDE.

The RDE is a measure of how well the embedded vectors can be distinguished from each

other and is given by the sum of the squared probabilities of the unique embedded vectors

minus 1 divided by the number of unique embedded vectors.

MultiScale sample entropy(MSE) is calculated using the multiscaleSampleEntropy function.

MSE is a measure of the complexity of a time series signal and is an extension of sample

entropy (SE).MSE has four parameters - x (the input time series signal), m (the length of

the comparison vector), r (the tolerance or neighborhood radius), and tau (the scale factor).

The input signal is downsampled by taking the mean of non-overlapping segments of length

tau. The resulting signal is referred to as the coarse signal. The coarse signal is divided

into (m + 1)-element sequences and stored in a matrix X. The number of sequences that are

"matching" (i.e., similar to each other within a certain tolerance) is then calculated using

the Chebyshev distance metric and the neighborhood radius (r). The number of matching

sequences is stored in variable A. The same process is repeated for m-element sequences and

the number of matching sequences is stored in variable B. The final MSE value is calculated

as the logarithmic scaling of B by A. If either A or B is zero, NaN is returned as the MSE

value.

e = ln
(

B
A

)
(4.3)

All these features are time domain features.
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4.4 Modeling and classification

Classification is a predictive modeling task in machine learning where a class label is pre-

dicted for a given sample of input data. In supervised machine learning, a class label is

assigned in a test image based on previous experience from the training set. For classifica-

tion the following models are adopted:

• Deep Neural Network(DNN)

• Artificial Neural Network(ANN)

• Bidirectional-Long short-term memory (Bi-LSTM)

• Random Forest Regressor(RFR)

• K-nearest neighbors

Stratified K-Fold cross-validation is a technique for evaluating machine learning models by

dividing a dataset into K folds (where K is a user-specified number), and then using each fold

as a validation set while the remaining K-1 folds are used as the training set. This process

is repeated K times, with each fold being used once as the validation set. K-folds cross

validation method according to Figure 4.4:

Figure 4.4: Procedure of Stratified K-Fold (K=5) cross-validation.

The main idea behind Stratified K-Fold cross-validation is to ensure that each fold contains

roughly the same proportions of each target class as the complete dataset. This is particularly

useful when the target classes are imbalanced, as it helps prevent over-representation or

under-representation of any class in the validation set.
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Stratified K-Fold cross-validation is often used in machine learning to estimate the perfor-

mance of a model on unseen data, and to tune the hyperparameters of the model for improved

performance.

4.4.1 Deep Neural Network(DNN)

Our DNN model has 36 input features, which are fed into the first hidden layer with 78 units

and the activation function "relu". The input layer has input dimension parameter set to 36.

The following hidden layer has the same structure with 78 units and "relu" activation func-

tion.

Batch normalization and dropout regularization with a rate of 0.5 which randomly drops out

50% of the neurons in each forward pass to prevent overfitting are also used to improve the

performance of the DNN. Batch normalization is applied after the second dense layer, while

dropout regularization is applied after the third dense layer.

The final layer is a single neuron with a sigmoid activation function that outputs a binary

classification. The DNN is compiled with the Adam optimizer and a binary cross-entropy

loss function. The accuracy metric is also computed during training. The learning rate of the

Adam optimizer is set to 0.01..

We have used cross-validation, specifically StratifiedKFold with 10 folds. The EarlyStopping

and ModelCheckpoint classes are used to stop the training early if the validation loss does

not improve for a certain number of epochs, and to save the best model, respectively. The

training and test sets are created for each fold, and the training set is further split into a

training set and a validation set. The model is trained for 200 epochs with a batch size of

64 and early stopping with a patience of 30 epochs if the validation loss does not improve.

After training, the model’s predictions are rounded to 0 or 1.

4.4.2 Artificial Neural Network(ANN)

Our feedforward artificial neural network (ANN) model has a sequential architecture and

contains two dense layers and uses the tanh activation function for the first layer and the

sigmoid activation function for the final layer. The first layer has 36 units and an input
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dimension of 36. Batch normalization is also applied to the output of the first layer to improve

the performance of the ANN.

The ANN is compiled with the Adam optimizer and a binary cross-entropy loss function. The

accuracy metric is also computed during training. The learning rate of the Adam optimizer

is set to 0.01.

We have used cross-validation, specifically StratifiedKFold with 10 folds. The EarlyStopping

and ModelCheckpoint classes are used to stop the training early if the validation loss does

not improve for a certain number of epochs, and to save the best model, respectively. The

training and test sets are created for each fold, and the training set is further split into a

training set and a validation set. The model is trained for 200 epochs with a batch size of

32 and early stopping with a patience of 30 epochs if the validation loss does not improve.

After training, the model’s predictions are rounded to 0 or 1.

4.4.3 Bidirectional-LSTM

Our bidirectional LSTM model contains has 2 bidirectional LSTM layers, each with 72 and

36 units, respectively.The input shape is 36

After the Bi-LSTM layers, a dense layer with 36 units and the ReLU activation function is

added, followed by a dropout layer with a dropout rate of 0.5 to reduce overfitting. Finally,

a dense layer with 1 unit and the sigmoid activation function is added to produce the binary

classification output.

The Bi-LSTM network is compiled with the Adam optimizer and a binary cross-entropy loss

function. The accuracy metric is also computed during training.

We have used cross-validation, specifically StratifiedKFold with 10 folds. The EarlyStopping

and ModelCheckpoint classes are used to stop the training early if the validation loss does

not improve for a certain number of epochs, and to save the best model, respectively. The

training and test sets are created for each fold , and the training set is further split into a

training set and a validation set. The model is trained for 200 epochs with a batch size of 64

and early stopping with patience of 30 epochs if the validation loss does not improve. After

training, the model’s predictions are rounded to 0 or 1.
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4.4.4 Random Forest Regressor(RFR)

Our RFR model has been created using the scikit-learn library, with the following hyperpa-

rameters specified:

• n_estimators : the number of trees in the forest, set to 150.

• min_samples_split : the minimum number of samples required to split an internal

node, set to 5.

• max_depth : the maximum depth of the tree, set to 10.

• random_state : the seed for the random number generator, set to 32.

We have used cross-validation, specifically StratifiedKFold with 10 folds. The training data

is split into train and test sets for each fold. After training, the model’s predictions are

rounded to 0 or 1.

4.4.5 K-Nearest Neighbors (KNN)

Our KNN classifier is implemented using the KNeighborsClassifier class from the scikit-

learn library. The classifier is created with the following parameters:

• n_neighbors : This parameter specifies the number of nearest neighbors to consider for

classification. In this case, the value is set to 3.

• weights : This parameter determines the weight function used in prediction. It can be

set to ’uniform’ for uniform weighting, or ’distance’ for weighting by the inverse of

the distance. In this case, the value is set to ’distance’, meaning that closer neighbors

will have a higher weight in the prediction.

We have used cross-validation, specifically StratifiedKFold with 10 folds. The training data

is split into train and test sets for each fold. After training, the model’s predictions are

rounded to 0 or 1.
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Chapter V

Result Analysis and Discussion

The mentioned methods and terminologies in the previous chapter are applied to the acquired

dataset to classify the left-hand movement and right-hand movement.Evaluation metrics for

classification are described in section 5.1. Classification results are analyzed in section 5.2.

Finally, the chapter is summarized in section 5.3.

5.1 Evaluation Metrics

Evaluation metrics are used to measure the performance of a deep learning model. In the fol-

lowing subsection Evaluation Metrics for classification are described. Using these evaluation

metrics, the results of mentioned methods in the previous chapter are analyzed in section 5.2.

5.1.1 Classification Evaluation metric

Classification evaluation metrics are used to evaluate the performance of a binary class clas-

sification model. Some common classification evaluation metrics include:

• Accuracy: Accuracy is a commonly used evaluation metric for binary classification

models. It measures the proportion of correctly predicted labels to the total number of

instances. Accuracy is defined as:

Accuracy = True Positive+True Negative
Instances

Where True Positives (TP) are instances that are correctly predicted as positive and

True Negatives (TN) are instances that are correctly predicted as negative. Accuracy is

a simple and straightforward metric, but it may not always provide a complete picture

of the model’s performance. For example, in a situation where the negative class is

much more prevalent than the positive class, a model that always predicts the negative

class will still have a high accuracy even though it is not detecting the positive class

well. In such cases, precision, recall, and F1 score are more appropriate evaluation

metrics.
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• Precision: Precision is a commonly used evaluation metric for binary models. It

measures the proportion of true positive predictions to the total number of positive

predictions made by the model. It is defined as:

Precision = True Positive
True Positive+False Positive

Where True Positives (TP) are instances that are correctly predicted as positive and

False Positives (FP) are instances that are incorrectly predicted as positive. Precision

is a measure of the model’s ability to correctly identify positive instances and is partic-

ularly important when the cost of a false positive is high, such as in medical diagnosis

or fraud detection.

It’s worth noting that precision should be combined with recall to get a complete pic-

ture of the model’s performance. A high precision model is only desirable if it can

detect the majority of positive instances (high recall).

• Sensitivity: Recall, also known as sensitivity or true positive rate, is an evaluation

metric used in binary and multi-class classification models. It measures the proportion

of positive instances that are correctly predicted as positive by the model. Recall is

defined as:

Sensitivity or Recall = True Positive
True Positive+False Negative

Where True Positives (TP) are instances that are correctly predicted as positive and

False Negatives (FN) are instances that are incorrectly predicted as negative. Recall is

a measure of the model’s ability to correctly identify positive instances, especially in

cases where the positive class is rare. For example, in a fraud detection setting, recall

can be used to measure the model’s ability to identify all fraudulent transactions.

It’s worth noting that recall should be combined with precision to get a complete pic-

ture of the model’s performance. A high recall model is only desirable if it can cor-

rectly identify the majority of positive instances (high precision).

• Specificity: Specificity is an evaluation metric used in binary classification models that

measures the proportion of negative instances that are correctly predicted as negative

by the model. Specificity is defined as:

Speci f icity = True Negative
True Negative+False Positive
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Where True Negatives (TN) are instances that are correctly predicted as negative and

False Positives (FP) are instances that are incorrectly predicted as positive. Specificity

is a measure of the model’s ability to correctly identify negative instances, especially

in cases where the negative class is prevalent. For example, in a medical diagnosis

setting, specificity can be used to measure the model’s ability to correctly identify

patients who do not have a particular disease.

It’s worth noting that specificity should be combined with sensitivity (also known as

recall or true positive rate) to get a complete picture of the model’s performance. A

high specificity model is only desirable if it can detect the majority of positive instances

(high sensitivity).

• F1 Score: The F1 score is a commonly used evaluation metric for binary and multi-

class classification models. It is the harmonic mean of precision and recall and pro-

vides a single score that balances both measures. The F1 score is defined as:

F1 Score = 2× Precision×Recall
Precision+Recall

Where Precision = True Positives / (True Positives + False Positives) and Recall (Sen-

sitivity) = True Positives / (True Positives + False Negatives). A high F1 score indi-

cates that the model has a good balance between precision and recall. A score of 1.0

indicates perfect precision and recall, while a score of 0.0 indicates that the model is

not making any positive predictions.

It’s worth noting that the F1 score is only a single number and doesn’t provide a com-

prehensive view of the model’s performance. Other evaluation metrics, such as preci-

sion, recall, accuracy, and confusion matrix, should also be considered.

The mentioned statistical measures are calculated using the four terms from the confusion

matrix: TP, FP, TN, and FN. A confusion matrix is a table used to evaluate the performance of

a classification algorithm. It compares the actual class labels of instances to the class labels

predicted by the model. The confusion matrix displays the number of correct and incorrect

predictions made by the model, allowing us to calculate several important evaluation metrics.

The structure of confusion matrix is shown in Table 5.1
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Table 5.1: Confusion Matrix.

Predicted Positive Predicted Negative
Actual Positive True Positive False Negative
Actual Negative False Positive True Negative

A true positive is a correct positive prediction made by the model and a true negative is a

correct negative prediction made by the model. False negative is a mistake made by the

model where it fails to detect a positive case and false positive is a mistake made by the

model where it falsely identifies a negative case as positive.

5.2 Classification Results

For subject 1 the bidirectional LSTM model has achieved 85.31% accuracy which is the

highest among all the 5 models that are trained on the acquired dataset. For subject 2 the

bidirectional LSTM model has achieved 87.58% accuracy which is the highest among all the

5 models that are trained on the acquired dataset. A comparison chart of accuracy among the

models are shown in table 5.2.

Table 5.2: Average Classification Performances For Model Bi-LSTM,
DNN, ANN, Random Forest, and KNN.

SL No Model Accuracy of subject 1 Accuracy of subject 2
1 Bidirectional LSTM 85.31% 87.58%
2 DNN 85.06% 83.92%
3 ANN 84.03% 81.89%
4 Random Forest 68.76% 67.13%
5 KNN 67.13% 66.01%

5.2.1 Window Size 3 for Median Filter and Moving Average Filter

During signal processing operations on the raw signal, we have used 4 filters (Butterworth

band-stop filter, Notch filter, Median filter, and Moving average filter). In this case window

size 3 is used for Median filter and Moving average filter. Evaluation metrics of 5 models

based on window size are documented in table 5.3 and 5.4 for subjects 1 and 2 respectively.
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Table 5.3: Accuracy, Sensitivity, Specificity, Precision and f1 score of
5 models of subject 1 for window size 3.

SL No Model Accuracy Sensitivity Specificity Precision F1 Score
1 Bidirectional LSTM 94.94% 92.50% 97.44% 97% 94.87%
2 DNN 94.94% 94.87% 90% 90% 92.50%
3 ANN 89.87% 87.50% 92.30% 92% 89.74%
4 Random Forest 67.38% 72.15% 74.36% 74% 71.79%
5 KNN 71.25% 65% 77.50% 74% 69.33%

Table 5.4: Accuracy, Sensitivity, Specificity, Precision and f1 score of
5 models of subject 2 for window size 3.

SL No Model Accuracy Sensitivity Specificity Precision F1 Score
1 Bidirectional LSTM 98.73% 97.50% 100% 100% 98.73%
2 DNN 94.93% 95% 94.87% 95% 95%
3 ANN 91.14% 92.30% 90% 90% 91.14%
4 Random Forest 75.95% 71.75% 80% 78% 74.67%
5 KNN 75.95% 82.05% 70% 73% 77.11%

5.3 Discussion

In this chapter, the results of left-hand movement vs right-hand movement using different

models are described briefly. Maximum accuracy for motor imagery classification was found

by using the Bidirectional LSTM and DNN model with a 94.94% accuracy score for subject 1

and for subject 2, Bidirectional LSTM model has achieved the highest accuracy with 98.73%.
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Chapter VI

Conclusions and Future Works

6.1 Conclusion

Left-handed vs right-handed movement classification of motor imagery is required for sev-

eral applications, including brain-computer interfaces, rehabilitation, and motor skill train-

ing. By classifying the kind of motor imagery, researchers can acquire insights into how the

brain regulates and coordinates movement, so enhancing our understanding of motor control

and movement disorders including Parkinson’s disease and stroke. Additionally, it can also

be used for brain-computer interface applications, where the intention of the user to move a

specific limb is decoded from their brain activity. In our work, Five models have been trained

on two different versions of the preprocessed dataset. The Bidirectional LSTM model has

achieved the highest accuracy among the five models for both subject 1 and subject 2. The

DNN model for subject 1 has the same highest accuracy as Bidirectional LSTM. For subject

1 the highest accuracy is 94.94% and for subject 2 it is 98.73%.

6.2 Limitations

Some aspects of this thesis work are yet to be considered. There are some limitations of the

thesis work which are listed below:

• More participants should be included.

• Random forest regressor and KNN did not work well for our dataset.

• Though BiLSTM achieved the second highest average accuracy, it is a time consuming

process.
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6.3 Recommendations For Future Research

This thesis work can be extended in several ways. The following includes some possible

areas that are recommended to extend the present work.

1. The dataset can be increased and diversified so that the classifier becomes more robust

and exceeds the highest accuracy.

2. A more robust model for classification of motor imagery data can be built and trained

with more data.
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