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Abstract—Human activity recognition, or HAR for short, is a
process of interpreting specific human motion based on sensor
data. HAR has many human-centric applications, notably in
eldercare and healthcare as an assistive service. However, due
to the noisy sensor data, it requires domain analysis and signal
processing to extract features from the raw data to fit into the
machine learning models. The recent revolution of Deep Learning
Models makes it possible to learn the features automatically
instead of handcrafting features. This area extensively utilizes
deep learning techniques like CNN and RNN. In this paper,
we present a branch CNN and LSTM structure for recognizing
human activity that yields cutting-edge outcomes. The experiment
is conducted on the SHOAIB Al and UCI HAR datasets, which
produce better results than the traditional approach.

Index Terms—Human Activity Recognition (HAR); Branch
CNN-LSTM (BCL); CNN; LSTM; Deep Learning; Smartphone;
Sensors.

I. INTRODUCTION

In the context of Human-Robot Interaction, the process of
recognizing human activity is referred to as Human Activity
Recognition (HAR). HAR is a key component of healthcare,
particularly in assisting with elder care, supporting rehabili-
tation, and detecting cognitive disorders [1]. Typically, data
for HAR is gathered using either cameras or sensors [2]. The
disadvantages of using camera data are the large size of the
data, insufficient lighting conditions, privacy issues and it can
only monitor some specific areas where the cameras are lo-
cated. Another widely used method is wearable sensors which
are mainly used for experimentation, and not particularly used
by general people due to their cost. Nowadays smartphones
are equipped with multiple sensors capable of human activity
recognition [3]. As most people use smartphones anyway, it
doesn’t require any extra cost.

The traditional approach to machine learning involves the
extraction of statistical features from raw sensor data in the
time and frequency domains. Feature engineering is a de-
manding task that necessitates specialized knowledge and can
be quite time-consuming. Moreover, there exists a potential
risk of losing valuable information, such as the temporal
relationships between actions, during the feature extraction
process. [4]. Newly developed deep learning models have
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been proven capable of producing excellent results in HAR
without handcrafted feature extraction. These models can learn
representative features due to their stacking structure.

In this paper, we introduce a CNN-LSTM branch network
model designed to identify human activities using time-series
data captured from inertial sensors embedded in smartphones.
Our contributions to this study include:

e Introducing a CNN-LSTM branch model capable of
automatically extracting features while preserving time
dependencies for human activity classification.

o Using a CNN model to extract characteristics from raw
data frames, which are subsequently interpreted by an
LSTM model.

o Conducting experiments on the proposed model, which
demonstrate superior performance compared to conven-
tional machine learning methods, along with deep learn-
ing models like CNN, LSTM, or a combined CNN-LSTM
architecture.

The structure of the paper is as follows: Section II presents
a comprehensive overview of prior research conducted on
human activity recognition using sensor data. Section III
introduces the proposed methodology in detail. Section IV
discusses the results obtained from the proposed method.
Finally, in Section V, the paper concludes by highlighting
potential future research directions that can be conducted in
this area.

II. RELATED WORKS

Foerster and Smeja first introduced human activity recogni-
tion using sensor data in the 1990s [5], with the most accurate
results being achieved by placing various sensors on different
parts of the body. In [6], Ling Bao and Stephen S. Intille
achieved an 84% accuracy rate using decision tree classifiers
and five small biaxial accelerometers placed on different body
parts.

For using machine learning algorithms, feature extraction
has always been an important task. Widely used hand-crafted
features are statistical features, fourier transform and wavelet
transform. In [7], Kwapisz, Weiss and Moore performed HAR
using J48 decision trees which perform better than other data
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mining techniques. In [8], Ankita Jain et al. used k-nearest
neighbor (KNN) and support vector machine (SVM) for ac-
tivity recognition over two public datasets. Naive Bayesian and
k-nearest neighbor (KNN) were used by P. Gupta and T. Dellas
[9]. All these works have derived their own hand-crafted
features and having different experimental grounds it makes
difficult to compare them with each other. Inappropriate hand-
designed features may affect the result. So, domain knowledge
is required for designing hand-crafted features for a specific
application [4].

Due to recent advancements in processing power, various
deep learning algorithms have been introduced for catego-
rization tasks, which extract features automatically without
domain knowledge [10]. Y. Chen introduced an LSTM-based
approach on the (WISDM) Lab public dataset, achieving
92.1% accuracy [11]. S. Yu and L. Qin improved the accuracy
to 93.79% using Bidir-LSTM Networks [12]. T. Yu et al. ob-
tained similar performance to CNN by using a parallel multi-
layer LSTM network on the public UCI HAR dataset, but
with lower computational complexity [13]. J. Wang surveyed
the progress of deep learning techniques in activity recognition
using sensors and found that RNN performed better for short-
term activities while CNN was better suited for long activities
[14]. K. Xija et al. introduced a combined LSTM-CNN network
where sensor data was inputted into a two-layer LSTM (Long
Short-Term Memory) network, which was then followed by
convolutional layers [15].

III. PROPOSED METHODOLOGY

The objective of this study is to identify human daily activ-
ities using smartphone sensor data, specifically accelerometer
and gyroscope data. In this section, we present the CNN-
LSTM network architecture, which is designed to accomplish
this task.

A. Preprocessing

Human Activity Recognition is done on raw sequential
sensor data. Because the data is sequential in nature, it cannot
be split randomly. Otherwise, data from the same participant
can be found in both the testing sets and training sets. As
a result, the accuracy may increase, but it fails to accurately
represent the true performance of the model. So, the dataset
needs to be split participant-wise.

The proposed work utilizes two datasets that are publicly
available, namely SHOAIB and UCI-HAR, to conduct the
experiments and evaluate the performance of the approach.

1) SHOAIB dataset: Each participant has sensor data for
5 positions: left pocket, right pocket, right leg (using a belt
clipper), right wrist, and right upper arm. Only left and right
pocket data were considered. Magnetometer sensor data was
ignored. (100, 9) sized frames were made on left and right
pocket data separately with 50% overlap. Then left pocket and
right pocket data were concatenated. The framing was done
on each participant individually. Then out of 10 participants,
3 participants were randomly chosen for test data. In partic-
ular, 5,032 samples were reserved for testing whereas 20,128

samples were allotted for training. This separation allows for a
complete evaluation of the model’s performance on unseen or
unobserved data, enabling a thorough evaluation of its efficacy.

2) UCI dataset: The dataset is split into two halves at
random: 30% of the data are put aside for testing, while
the remaining 70% are assigned for training. The data from
the sensors were divided into a window of size (128, 9).
Specifically, there were 7,352 samples allocated for training
purposes, while 2,947 samples were set aside for testing. The
accelerometer signal was separated into two components using
a low-pass filter: the gravitational force and the body motion.
To filter out the gravitational force, a filter with a 0.3 Hz cutoff
frequency was used. Features were extracted from the time and
frequency domains to create feature vectors for each window
of size (128, 9).
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Fig. 1. Feature extraction process of CNN.

B. Feature Extraction

The data collected from smartphone sensors to capture
human activity forms a time series, which has a clear one-
dimensional structure. This structure means that variables that
are close together in time are strongly correlated with each
other. So it is crucial to identify and isolate local features
within data. CNN is capable of achieving this by using local
receptive fields. Time-series data of ( M x N) is taken as
input to CNN in Fig. 1, where M represents the total data
length and N is the no. of features available in the data. For
extracting features from time-series data convolution filters are
used. The filter length of the proposed model in each branch is
3 and the depth is the same as the no. of features N. The no.
of feature maps created by the convolution process depends
on the no. of filters employed in the operation. The sliding
window technique is utilized to segment the input data into
frames. CNN treats each frame as a separate unit of data,
ignoring any temporal context outside of frame borders. The
temporal context between the data frames is also necessary to
identify activities accurately. Therefore, to capture temporal
features various techniques for HAR have utilized Recurrent
Neural Networks (RNNs).
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Fig. 2. CNN-LSTM branch architecture.

RNN suffers vanishing gradients problem. For this, it could
not capture long-term dependencies. LSTM is good with
long-term dependencies. In contrast to normal RNN, LSTM
features a chain-like structure with many gates on the repeating
module. So, the network can adapt its predictions to the added
context more correctly since LSTM can manage long-term
dependencies.

C. Model Construction and Validation

In this proposed CNN-LSTM branch network, in each
branch we have used convolution layers to extract the features
of human activities, then the extracted features are passed
through a LSTM layer. Finally, a dense layer is used to classify
human activity.

Fig. 2 shows our proposed CNN-LSTM branch approach
to classify activities. Keras API can go from idea to result in
the least amount of time which makes it a valuable tool for
conducting efficient and impactful research. We have imple-
mented a Keras model utilizing TensorFlow as the backend
on NVIDIA GTX 1050TI(GPU). Our model takes 9 signals;
acceleration (az, ay, a;), linear acceleration (lag, lay, la,),
and angular velocity (gz, gy, g-)-

The sensor data is converted into a fixed window size
and passed through three parallel convolution layers having
64 filters. Each output of these convolution layers is passed
through another convolution layer with 32 filters. These con-
volution layers extract necessary features which are important
for human activity recognition. Rectified linear units (ReLU)
are used to construct the feature maps in both convolution
layers in three branches with kernel size 3. A 30% dropout
layer is added in each branch and passed through a pooling
layer having pool size 2 in each branch. In order to lighten the
computational load and enhance basic translation invariance in
the internal representation, we employ max pooling within the
pooling layer. This technique helps in reducing the number of
factors that must be taught.
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The output of each branch is concatenated and two LSTM
layers are introduced after concatenation having 32 and 64
neurons. The LSTM layers receive extracted features in order
to extract the temporal dependencies of the signal which
are necessary for short-term human activities like walking,
jogging, etc. Then the LSTM layers output is provided to a
Dense layer having 128 neurons. Here, the rectified linear units
(ReLU) activation function is utilized. Finally, 50% output of
the Dense layer is normalized and then passed to a fully linked
output layer with a Softmax activation for classifying human
activity. To reduce categorical cross-entropy loss, the proposed
design was trained using an RMSprop optimizer with a 0.0001
learning rate. The training of the model was conducted using
32 batch sizes over 200 epochs with early stopping(a method
that checks the model’s performance while it is being trained
and stops it if no further improvement is seen).

D. Performance metrics

Various performance metrics are employed to assess the
efficacy of the suggested model.

accuracy = TP+TN 2
TP+TN+FP+ FN

precision = TP+ FP PT+PF P 3)

recall = 7TP1—1&—PFN “)

1 — score = 2 X precision X recall 5)

precision + recall
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IV. RESULTS AND DISCUSSIONS

Tab. T displays the effectiveness of several algorithms for
recognizing various activities. Tab. II and Tab. III describe the
specificity, recall, precision and fl-score of the SHOAIB and
UCT dataset respectively.

TABLE I. PERFORMANCE MEASUREMENT OF HAR USING DIFFERENT

ALGORITHMS.
Algorithms SHOAIB ucCI
Accuracy Loss Accuracy Loss
CNN 96.7%  0.12 91.48% 0.27
LSTM 953%  0.17 89.03% 0.33
CNN-LSTM(without branch)  96% 0.14 89.21% 0.34
Proposed Method 98 % 0.07 93.72% 0.25

A. Dataset Description

1) SHOAIB Dataset: Shoaib et al. introduced this particular
dataset. In total, ten male participants aged between 25 to
30 performed eight common daily activities like running,
walking, standing, sitting, jogging, walking upstairs, biking,
and walking downstairs for 3 to 4 minutes. Participants wore
five smartphones on different body positions to collect data
from sensors such as a gyroscope, accelerometer, linear ac-
celerometer, and magnetometer at a 50 Hz frequency. The
data collection took place inside except for biking. Fig. 3
depicts the accuracy and loss values across epochs, while Fig.
4 illustrates the corresponding confusion matrix.

TABLE II. PERFORMANCE MEASUREMENT ON SHOAIB DATASET.

Activity Specificity Recall Precision  Fl-score
Biking 0.997217 0.995833  0.983539  0.989648
Walking 0.996058 0.938889 0.975469  0.956829
Jogging 0.998840  0.981944  0.992978  0.987430
Walking upstairs 0.994434  0.965278  0.966620  0.965949
Walking downstairs ~ 0.990509  0.987360 0.944892  0.965659
Sitting 1.000000  0.997222  1.000000  0.998609
Standing 0.999768  0.994444  0.998605 0.996521
Model Accuracy Model Loss
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Fig. 3. Accuracy and loss plots of SHOAIB dataset: (a) accuracy (b) loss.

2) UCI Dataset: In this study, A Samsung Galaxy S II
smartphone was worn around the waists of 30 volunteers,
ages 19 to 48, as they took part in six different activities. The
sensors in a smartphone recorded linear acceleration and an-
gular velocity in three directions (x,y,z), at a 50 Hz frequency.
Using video recordings the data was labeled manually and the
dataset was randomly split into training and test data, with a
ratio of 70% for training data and 30% for testing data. Noise
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Fig. 4. Confusion matrix on SHOAIB dataset.

TABLE III. PERFORMANCE MEASUREMENT ON UCI DATASET.

Activity Specificity Recall Precision  Fl-score
Walking 0.990208 0.993952  0.953578  0.973346
Walking upstairs 0.983037 0.919321 0.911579 0.915433
Walking downstairs ~ 0.989711  0.942857 0.938389  0.940618
Sitting 0.969055 0.818731 0.841004 0.829721
Standing 0.973085 0.851504 0.874517 0.862857
Laying 1.000000  1.000000 1.000000  1.000000
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Fig. 5. Accuracy and loss plots of UCI dataset: (a) accuracy (b) loss.
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Fig. 6. Confusion matrix on UCI dataset.

was removed from the sensor data before segmenting them
into 50% overlapped 2.56-second windows. Fig. 5 depicts the
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accuracy and loss values across epochs, while Fig. 6 illustrates
the corresponding confusion matrix.

V. CONCLUSION

The proposed method successfully distinguishes between a
variety of human activities, including walking, running, sitting,
standing, jogging, and biking, with high accuracy, proving the
power of deep learning techniques to automatically acquire
useful features from unstructured data. With this method,
the advantages of LSTM networks and convolutional neural
networks are combined. It does away with the necessity for
manually created features, which is a need for conventional
machine learning methods. When compared to traditional
machine learning techniques, the proposed method for Human
Activity Recognition (HAR) employing smartphone sensors
offers the highest accuracy and efficiency. In the future, we
want to extend our work for smartphone position-independent
activity recognition.
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