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Introduction

= Sign Languages (SLs) are multimodal (manual & non-manual
components).

= Crucial for deaf communities, especially in healthcare to bridge
communication gaps.

= EXxisting SLR systems face challenges:
v" Difficulty capturing complex multimodal gestures.

v Limited dataset diversity (signer demographics, environment, sensor
modalities).

v" Privacy concerns with camera-based systems in healthcare.
v Need for robust models that generalize across real-world scenarios.

Our Proposed Solution: FusionEnsemble-Net

Multimodal Data and Preprocessing

* |[nput: RGB video (visual info: handshapes, facial expressions, body posture) and
Range-Doppler Map (RDM) radar data (motion info, privacy-preserving).

= Data synchronized, resized (224x224), and normalized.
Parallel Spatiotemporal Feature Extraction

= Utilizes an ensemble of four diverse spatiotemporal networks for robust feature
learning.

= 3D ResNet-18

= MC3-18

= R(2+1)D-18

= Swin-B (transformer-based)

= Temporal modeling layers (LSTMs, transformer encoders, linear projections)
capture dynamic sequences.

Attention-Based Feature Fusion
= Modality-specific temporal features are concatenated.

= A self-attention module dynamically re-weights visual and motion features to
generate a single fused representation.

Ensemble Classification Head

» Each fused feature vector is passed to an independent classifier.

* Final prediction is an average of probabilities from all classifiers, enhancing
robustness.

System Architecture
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Dataset and Experiments

Dataset

= MultiMeDalLlS: A large-scale, multimodal dataset for isolated
Italian Sign Language recognition in a medical context.

= Content: Contains 126 unigue signs, including 100 medical terms
and 26 alphabet letters.

= Modalities Used: We utilize the synchronized RGB video and RDM
radar data.

Implementation Detalls:
= Framework: PyTorch.
= Hardware: Trained on two NVIDIA A6000 GPUs.

= Optimization: Used the AdamW optimizer with pre-trained
weights from Kinetics-400 and ImageNet to leverage transfer
learning.

= Training: The model was trained for 25 epochs, requiring
approximately 44 hours.

Evaluation Metric
= Top-1 Accuracy on validation and test sets.
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Results and Analysis

Methods Modality Valid Test
SL-GCN [1] - 97.98
SSTCN [1] RGR - 96.33
ResNet(2+1)D Optical Flow [ 1] - 56.31
ResNet(2+1)D Frame [ 1] - 97.29
ResNet(2+1)D Encoding HHA [1] Depth - 88.04
RDM - 88.3
3xRDM - 91.7
MTI - 84.9
AutoTrans-RDMNet [11] A MTI ) 26 1
RDM+MTI - 91.4
3IXxRDM+3xMTI - 93.6
3D ResNet 06.58 96.58
MC3 08.96 99.06
R(2+1)D RGB+3xRDM 906.94 97.34
Swin-B 04.24 9442
FusionEnsemble-Net 99.37 99.44

" HHA=Height, Horizontal disparity, Angle, and MTI=Moving Target

Indications. _
Conclusion and Future Work

Conclusion

* Qur FusionEnsemble-Net sets a new SOTA accuracy of 99.44% on the MultiMeDalLlS
dataset.

= Qur diverse ensemble effectively fuses RGB and radar data for sign language
recognition.
Future Directions:
= Extend to continuous, conversational sign language.
= Develop a lightweight version for real-time deployment.

Models and codes are publicly available

Link: https://github.com/rezwanh001/Multimodal-Isolated-ItalianSign-Language-Recognition.
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