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Conclusion

 Our FusionEnsemble-Net sets a new SOTA accuracy of 99.44% on the MultiMeDaLIS

dataset.

 Our diverse ensemble effectively fuses RGB and radar data for sign language 

recognition.

Future Directions:

 Extend to continuous, conversational sign language.

 Develop a lightweight version for real-time deployment.

 Sign Languages (SLs) are multimodal (manual & non-manual 

components).

 Crucial for deaf communities, especially in healthcare to bridge 

communication gaps.

 Existing SLR systems face challenges:

 Difficulty capturing complex multimodal gestures.

 Limited dataset diversity (signer demographics, environment, sensor 

modalities).

 Privacy concerns with camera-based systems in healthcare.

 Need for robust models that generalize across real-world scenarios. 

Multimodal Data and Preprocessing

 Input: RGB video (visual info: handshapes, facial expressions, body posture) and 

Range-Doppler Map (RDM) radar data (motion info, privacy-preserving).

 Data synchronized, resized (224×224), and normalized.

Parallel Spatiotemporal Feature Extraction

 Utilizes an ensemble of four diverse spatiotemporal networks for robust feature 

learning.

 3D ResNet-18

 MC3-18

 R(2+1)D-18

 Swin-B (transformer-based)

 Temporal modeling layers (LSTMs, transformer encoders, linear projections) 

capture dynamic sequences.

Attention-Based Feature Fusion

 Modality-specific temporal features are concatenated.

 A self-attention module dynamically re-weights visual and motion features to 

generate a single fused representation.

Ensemble Classification Head

 Each fused feature vector is passed to an independent classifier.

 Final prediction is an average of probabilities from all classifiers, enhancing 

robustness.
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Dataset

 MultiMeDaLIS: A large-scale, multimodal dataset for isolated 

Italian Sign Language recognition in a medical context.

 Content: Contains 126 unique signs, including 100 medical terms 

and 26 alphabet letters.

 Modalities Used: We utilize the synchronized RGB video and RDM 

radar data.

Implementation Details:

 Framework: PyTorch.

 Hardware: Trained on two NVIDIA A6000 GPUs.

 Optimization: Used the AdamW optimizer with pre-trained 

weights from Kinetics-400 and ImageNet to leverage transfer 

learning.

 Training: The model was trained for 25 epochs, requiring 

approximately 44 hours.

Evaluation Metric

 Top-1 Accuracy on validation and test sets.

Link: https://github.com/rezwanh001/Multimodal-Isolated-ItalianSign-Language-Recognition.
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