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Abstract

Blood components such as hemoglobin (Hb), and glucose (Gl) measuring are essential
for monitoring one’s health condition. Normally, clinical assessments of Hb and Gl are
performed by evaluating blood samples collected through venipuncture in laboratories. These
techniques are uncomfortable, painful, and costly for patients. A non-invasive, affordable,
accurate, and point-of-care Hb and Gl test is required everywhere. This study proposes a
novel non-invasive, cost-effective, and convenient method for monitoring Hb and Gl levels
using photoplethysmogram (PPG) signal extracted from smartphone video, and deep neural
networks (DNN). Fingertip videos are collected from 93 subjects using a smartphone camera
and a lighting source, and subsequently the frames are converted into PPG signal. The PPG
signals have been preprocessed with Butterworth bandpass filter to eliminate high frequency
noise, and motion artifact. Therefore, 34 characteristic features are extracted from the PPG
signal and its derivatives and Fourier transformed form. In addition, age and gender are
also included as features due to their considerable influence on hemoglobin and glucose.
Maximal information coefficient (MIC) feature selection technique has been applied to select
the optimal features to avoid redundancy and over-fitting. Finally, DNN based models have
been developed to estimate the blood Hb, and Gl levels from the optimal feature set. To
compare the performance of the DNN based models, several classical regression models
were also developed using the same input condition as DNN based models. A comparison
between DNN based models and classical regression models have been done by estimating
different error measurement metrics. DNN models along with the MIC feature selection
technique outperformed in estimating Hb and Gl levels with the coefficient of determination
(R?) of 0.969 and 0.968, respectively. Experimental outcomes demonstrate that the proposed
approach can be utilized clinically to monitor blood component levels without drawing blood
samples. This research also shows that smartphone-based PPG signal has the potential to

precisely measure the various blood components.
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CHAPTER 1

Introduction

1.1 Background

Blood is the essential life-maintaining fluid that strews over the whole body and is respon-
sible for carrying heat, hormones, antibodies, immune cells, etc. necessary for every cell.
Everything related to the life cycle depends on blood directly or indirectly. Hemoglobin
(Hb) and glucose (Gl) are two key components of human blood. Hb, a protein molecule is
the fundamental element of the red blood cells. Hb carries oxygen around the body from
the lungs. Hb is also essential for preserving the structure of red blood cells. Red blood
cells are naturally spherical with narrow centers, resembling a doughnut with no hole in the
middle. Therefore, abnormal Hb structure can alter the shape of red blood cells and hinder
their activity and blood flow within blood vessels. Hb level is expressed as the amount of Hb
in grams (g) per deciliter (dL) of whole blood. Both the deficiency of Hb and excessive Hb
cause disease. The normal ranges for Hb depend on the age and, beginning in adolescence,
the gender of the person. The normal ranges are: Newborns: 17 to 22 g/dL, One (1) week
of age: 15 to 20 g/dL, One (1) month of age: 11 to 15 g/dL, Children: 11 to 13 g/dL, Adult
males: 14 to 18 g/dL, Adult women: 12 to 16 g/dL, Men after middle age: 12.4 to 14.9
g/dL, Women after middle age: 11.7 to 13.8 g/dL [2]. Two problems arise due to lack off
sufficient amount of red blood cells (low Hb level) or excessive red blood cells (high Hb
level): i) Anemia, ii) Polycythemia. According to World Health Organisation (WHO) anemia
is a common disease and about 1.62 billion people all over the world suffered from anemia
[3]. Every year, over 10 million people dies due to different diseases caused by anemia [4].
Therefore, regular measurement of blood Hb level is essential for the treatment of anemic
patients [5] and premature babies [6], and dengue fever [7].

Glucose, is one of a group of carbohydrates known as simple sugars. The body produces
glucose from foods that supply energy to all the cells in the body. But, if too much glucose
remains in the blood it causes problems. Diabetes is one of the most chronic diseases in the
world [8] caused when the body system cannot control sugar level in the blood. Diabetes is a
serious health concern that has been proclaimed a worldwide epidemic by the World Health
Organization (WHO) because of its quickly expanding rate. The current estimates by the
International Diabetes Federation suggest that 415 million people have diabetes worldwide in
2015 and foresee it increasing to 640 million by 2040 [9]. In addition, patients with chronic
diabetes are more likely to suffer from a variety of ailments, including heart disease, kidney
damage, and lead to vision loss [10]. Every year, almost 4 million deaths are caused by

high blood glucose [11]. Insulin produced by the pancreas lowers blood glucose. Absence



or insufficient production of insulin, or an inability of the body to properly use insulin
causes diabetes. Diabetes is of two types: Type-1 is found in teenagers caused body does
not produces enough insulin, Type-2 is found in adults caused when body produces insulin
but can not use effectively. Former names for these conditions were insulin-dependent and
non-insulin-dependent diabetes, or juvenile onset and adult-onset diabetes. Sometimes it
is hard to detect the diabetes type, and further tests are required to identify the differences
between diabetes Type-1 and Type-2 or more [12]. When the level of glucose is < 3.9
mmol/L, it is called hypoglycemia, and when the level of glucose is > 7.8 mmol/L, it is called
hyperglycemia. If the level of blood sugar exceeds the typical range of 3.9 to 7.1 mmol/L or
(70 to 130 mg/dL), it causes many long-term health issues [13]. Continuous monitoring of
blood glucose level can help and prevent the level of hyperglycemia in diabetic patients. To
reduce the risk of diabetes and heart disease, one must keep the level of blood sugar within
a safe range [14]. Long term diabetes is very risky because it can increase the risk of stroke
and other heart diseases, damage kidneys and nerves and lead to blindness [15]. Continuous

monitoring of blood glucose level is very important for diabetes patients.

1.2 Hemoglobin and Glucose Measurement Techniques

Hemoglobin or glucose level estimation can be viewed as diagnosis process to measure
the amount of hemoglobin or glucose exists in the blood. There are mainly three ways to
measure the hemoglobin or glucose level: i) invasive technique, ii) minimally technique, and

1i1) non-invasive technique.

1.2.1 Invasive Technique

A medical procedure that invades (enters) the body, usually by cutting or puncturing the
skin or by inserting instruments into the body. Various invasive methods are being used for
blood component measurement. Most of these method measure blood components drawing
blood via needle from the body (Figure 1.1). These methods are painful, inconvenient and
costly for the patient due to frequent blood collection, and do not allow real-time monitoring
[16, 17]. These procedures are often deleterious for children and people with needle-
phobia. Needle phobia is the extreme fear of medical procedures involving injections or
hypodermic needles affecting approximately 10% of the world population [18]. As needle
is necessary for invasive measurement, people with needle-phobia seem to be unwilling to
measure. However, the invasive technique is more precise and trustworthy, but it requires a
well-resourced laboratory with skilled personnel, the majority of whom are inaccessible in a
remote areas [19]. Moreover, with the repetitive use of needle to draw blood, finding veins

gets harder to draw blood.
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Figure 1.1: Invasive blood components level measurement process in clinical setup: (a)
patient ready for blood test, (b) blood collected using needle, (c) venous blood obtained

via venipuncture, (d) analysis the blood component in laboratory, and (e) laboratory
measurement result.

(d) )

1.2.2 Minimally Invasive Technique

These approaches rely either on the interaction of electromagnetic radiation with the tissue
or the extraction of fluid across the barrier. The structure and physiology of the skin make
the technical realization of transdermal hemoglobin monitoring a difficult challenge. The
techniques involving transdermal fluid extraction circumvent and compromise the barrier
function of skin’s outermost and least permeable layer, the stratum corneum, by the application

of physical energy [20].

1.2.3 Non-Invasive Technique

Non-invasive systems have mainly three functional units [21] shown in Figure 1.2. A data
collection unit that acquires image or video data from the subject. A feature extraction
unit that takes raw data and generates features from it. A measurement unit that estimates
and validates results using different learning models (e.g machine learning model, and deep
learning model, etc.). The non-invasive methods are more convenient to the patients as only
bio-data (image, video etc.) is enough to measure the blood components instantly. Although
invasive methods are more reliable, it is often costly and required well-equipped diagnostic

center with properly trained personnel.
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Figure 1.2: An overview of non-invasive blood component (Hb and Gl) measurement
technique.




1.3 Motivation

Recently, photoplethysmogram (PPG) are widely used for vitals psychological parameters
monitoring. PPG is an optical measuring technique used to measure volumetric changes in
blood circulation [22]. PPG device comprises of a light source to illuminate tissue and a sensor
to detect the reflected light. Numerous researchers have studied a variety of physiological
parameters using the PPG signal due to its ease of use, low cost, and user-friendly setup
[23]. For example, hemoglobin level estimation [24], heart rate monitoring [25], sleep
monitoring [26], blood pressure estimation [27], and glucose level measurement [28]. PPG
based near-infrared spectroscopy is most admired technique by the researchers because of
its get-at-able and cheap setup [29]. Conventionally, PPG signals are acquired using optical
techniques like sensor-based devices, chips, or pulse oximeters [27, 30, 31, 32]. Recently,
several smartphones have built-in sensor systems for instantaneous measurement of heart rate,
and oxygen saturation based on PPG signals. Patients who need constant health monitoring
and health professionals can benefit from these non-invasive approaches [33]. However,
technological improvements have enabled the smartphone camera to act as a sensor. For
example, in the year 2015, Devadhasan et al. [34] used Samsung camera to estimate Gl. In
the year 2016 and 2017, Wang et al. [35, 24] created an app using Nexus-5p and Nexus-6p
called HemaApp to calculate Hb from fingertip video. In the same year, Anggraeni et al.
[36] constructed a system using digital image of palpebral conjunctiva captured with an Asus
Zenfone 2 Laser. In 2019, Hasan et al. [37] designed the SmartHeLLP smartphone application
utilizing Nexus-4p to determine the Hb level. In the year 2019, Chowdhury et al. [38]
developed a non-invasive approach to estimate the Gl using the iPhone 7 plus. In the same
year, Zhang et al. [39] developed a non-invasive blood glucose measurement system based
on smartphone PPG signal.

Therefore, we are motivated to develop a non-invasive hemoglobin and glucose estimation

method that aids doctors as well as patients to measure hemoglobin or glucose levels easily.

1.4 Problem Statement

The vast majority of blood component estimation technology commercially available is
invasive or minimally invasive. Invasive devices for monitoring blood hemoglobin or glucose
are poorly constructed and uncomfortable, whereas minimally invasive technologies have
a limited lifespan and stability. Drawing blood from a vein involves the insertion of a
needle associated with which patients may feel discomfort, pain, numbness, or a shocking
sensation, and afterwards itching or burning at the collection site. These procedures are often
traumatic for children and mentally disabled persons. Additionally, patients require travel to
a medical facility which can be time-consuming and involve some expenses. Consequently,

there is a need for a cost-effective, advantageous, non-invasive technology that can improve



routine blood testing. Existing blood component measurement techniques have the following
limitations.

* Most of the commercially available devices for hemoglobin and glucose measurement
are invasive or minimally invasive.

* There are some commercial non-invasive point-of-care tools for hemoglobin and glu-
cose levels assessment. Most of these solutions suffer from one or more of the fol-
lowing limitations: 1) challenging data collection processes; 2) complex data analysis
and feature extraction processes; 3) affordability and portability; and 4) lack of user-
friendliness and costly external modules [40].

* Most of the existing techniques use specific hardware, e.g., laser light and finger chip,
to acquire the PPG signal [41, 42].

1.5 Specific Objective

The main objective of the research is to develop a smartphone based non-invasive technique
for blood components measurement (hemoglobin and glucose). To reach the goal the study
will be carried out with the following specific objectives:
o Study the existing non-invasive methods for blood components measurement.
e Collect the fingertip video placing index finger on NIR-LED board through smartphone
primary camera.
o Generate the PPG signal from the fingertip video and extract optimal PPG characteristic
features from the generated PPG signal.
e Develop a non-invasive hemoglobin and glucose levels estimation method using deep

neural network models.

1.6 Methodology

In this study, we have proposed a non-invasive method to estimate blood component (hemoglobin
and glucose) levels with smartphone PPG signals extracted from fingertip videos and deep
neural network model. The method has three basic steps. Initially, a near-infrared light-
emitting diode (NIR-LED) kit/device is used to illuminate the finger and a smartphone to
acquire a 15-second fingertip video. In the second step, frames are separated from each
fingertip video. The red, green, and blue channels are separated from each frame, and the
PPG signal is extracted from the channel with the highest intensity. Butterworth bandpass
filter is applied to remove the high-frequency noise and motion artefacts. A peak detelction
algorithm is used to select the best PPG cycle. Therefore, features are extracted from the
preprocessed selected PPG cycle and its derivatives (PPG’ and PPG”), as well as the Fourier
transform. After feature extraction, the maximal information coeflicient (MIC) feature se-
lection technique has been applied to select the optimal feature set and discard redundant

and irrelevant features for hemoglobin or glucose measurement. Finally, in the last step
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Figure 1.3: Block diagram of proposed method: step 1: data collection, step 2: feature
extraction and seelction, step 3: model development and estimation.

two independent DNN based models have been developed using the optimal feature sets to
estimate hemoglobin and glucose levels. Overall, functional block diagram of the proposed

method is illustrated in Figure 1.3.

1.7 Scope of the Thesis

Recently, smartphone-based non-invasive techniques have been considered for various blood
component levels assessment. In this study, a new non-invasive technique is proposed to
estimate the hemoglobin and glucose levels using a smartphone PPG signal extracted from
fingertip video. Overall the important scopes of this thesis are as follows:
* Data collection protocol can be improved using a smartphone camera that can capture
a fingertip video under low-cost near-infrared (NIR) LED lights.
* Introducing novel video-image processing techniques to generate PPG features of
fingertip video.
* Regression algorithms open opportunities for the development of estimation models,

that can adapt to a new user’s fingertip videos and, update the model from their PPG



features.

* The program is written in Python 3.6 version.

1.8 Contribution

Major contributions of this study are summarized below:
* Constructing a wearable data collection kit with NIR LEDs to collect fingertip videos.
* Generating the PPG signal from video data as well as selecting the best PPG cycle for

feature extraction.

Extracting features from preprocessed selected PPG cycle and its derivatives, and
selecting the optimal feature set using MIC feature selection algorithm.
* Developing the deep neural network models to assess blood hemoglobin and glucose

levels non-invasively.

1.9 Organization of the Thesis

The rest of this thesis is organized in five chapters, which are as follows:

Chapter II provides an overview of the existing works related to blood components mea-
surements with their lacking and achievement. This chapter made the scope of our work. A
summary of the literature survey is also provided in tabular format at the end of this chapter.
Chapter III explains theoretical consideration and machine learning algorithms.

Chapter IV explains our proposed methodology elaborately. From data collection to model
development every steps of the proposed system is discussed here.

Chapter V describes experimental analysis and performance analysis of our work along with
the comparison of results works.

Chapter VI ends with concluding remarks and future directions.



CHAPTER 11

Literature Review

2.1 Introduction

The smartphone is a portable, affordable and convenient platform for developing point-of-
care health tools. Non-invasive techniques are essential for patients who require to monitor
blood tests regularly. There are numerous noninvasive hemoglobin or glucose measurement
methods related to our work. In this chapter, we present a thorough survey of existing
literature on hemoglobin or glucose estimation to compare and contrast with our proposed
method. The shortcomings and achievements of their work are also identified. The chapter

ends with a summary of the literature survey.

2.2 Invasive Method

Most extensively used technologies for measuring blood hemoglobin and glucose are invasive.
The Medonic M-series M32 hematological analyzer is one such equipment. At first, 3-9 mL
blood sample is collected from the patients and inserted into the machine, and it takes about
one minute to produce results after analyzing the blood sample.

Another way of invasive hemoglobin level estimation was accomplished by an implantable
optic sensor interface, which can measure, control, monitor, and report blood component
levels continuously [43]. By using a thin, fork-shaped sensor with an electromagnetically
sensitive array comprising optical sources and detectors, Sun et al. implanted the sensing

system within subcutaneous tissue to continuously monitor the levels of blood components.

2.3 Minimal-Invasive Method

Blood components such as hemoglobin and glucose are measured using a minimally invasive
technique that requires only a small volume of blood. Despite the blood draw, the minimally
invasive method is simple, portable and inexpensive compared to the invasive method and
can produce results quickly.

HemoCue® is a widely used minimally invasive device for measuring hemoglobin [44].
It requires a small blood sample for hemoglobin estimation within a minute. A drop of blood
is collected in a cuvette and never tops off the cuvette after the initial filling. Clean any excess
blood from the cuvette using a lint-free wipe. Inspect the cuvette for air bubbles. Place the
cuvette in HemoCue® instrument. Gently push the holder into the photometer. Finally, the

estimated hemoglobin level is shown on the screen after 15-45 seconds.



Figure 2.1: Conventional blood glucose measurement device.

Glucose meter is used to measure blood glucose [45]. A small drop of blood is obtained
by pricking the skin with a lancet and is placed on the disabled strip. Strips are a consumable
element containing chemicals that react with glucose in the drop of blood is used for each
measurement. The strip is then inserted into the device, and reading the blood sample it
calculate glucose level. Typically, it is able to show the result on the screen within 60 seconds
(Figure 2.1).

2.4 Non-Invasive Method

Wang et al. [35] developed a smartphone-based application as HemaApp, using the smart-
phone camera and multiple lighting sources, including infrared LEDs that illuminate the
patient’s fingertip. A smartphone Nexus-5p was used for recording a series of videos with
white, 880 nm, and 970 nm LED array. They focused on three different hardware em-
bodiments, where the first embodiments included white flash + infrared emitter, the second
one consisted of incandescent lamp + white flash + infrared emitter, and the final one was
made white flash + series infrared LED array. A high-band pass filter was used to calculate
average intensity for each channel. Then Fast Fourier Transform (FFT) and Support Vector
Machine (SVM) regression were applied for each combination of datasets. However, this is
not sufficient for the people whose Hb level below 8 g/dL (heavily anemic). The limitation
of HemaApp is that they collected data by using a Nexus-5 device and only one brand of the
intense light bulb. Results could be varied according to the different brand devices. They
achieved a correlation (R) result between 0.69 and 0.82, and RMSE value between 1.26 and
1.56 g/dL. Edward et al. [24], improved the configuration of hardware for amplifying the
weaker signal of Blue and Green. They estimated the blood Hb level without using an IR
LEDs. In this case, they obtained Pearson correlation of 0.62 and an RMSE of 1.27. They
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also compared their estimated Hb with Masimo Pronto. In addition, they found that the effect
of ambient light in this study is significant.

Pai et al. in [46], developed a cloud computing-based glucose monitoring technique
using near-infrared photoacoustic spectroscopy. A portable embedded system collected
photoacoustic signals from tissue using FPGA, and the signal was denoised at a very high
speed in the back-end. Multiple features of the photoacoustic signal were applied to a kernel-
based regression algorithm to predict the glucose concentration in the blood. The mean
absolute relative difference of the calibration algorithm was 9.64. Ramasahayam et al. in
[41] constructed a PPG signal acquisition module based on the NIR spectroscopy technique
for measuring Gl levels. The module consisted of the finger clip with LED (935 nm, 950 nm,
and 1070 nm wavelengths) and a photodetector constituting an optode pair to detect the light
intensity change. The acquired PPG signal was processed, and an artificial neural network
model was implemented on field programmable gate array (FPGA) to predict blood glucose
levels. The mean square error of estimation was 1.02 mg/dL. The above two methods require
a specialized hardware toolkit for the collection of PPG signals. In addition, transmitting the
acquired signals to the computer for further analysis is also time-consuming.

M. Anggraeni and A. Fatoni [36] introduced a non-invasive anemia detection system
based on a digital image of palpebral conjunctiva captured by a smartphone camera. Digital
image of the inferior palpebral conjunctiva was captured with an Asus Zenphone-2 Laser
smartphone, ambient lighting without flash, and then color-corrected with white paper. The
color intensity (R, G, B) was extracted from raw data using Colorgrab software (Loomatix),
then evaluated using regression analysis. Among the three-color (R, G, B) intensity levels,
red color intensity resulted in a high correlation with clinically measured Hb levels and gained
R*=0.8139.

Chowdhury et al. [38] developed a non-invasive approach to estimate the BGL based
on smartphone video. A smartphone camera with 30 frames per second (fps) and 30 fps
was used to record the fingertip video of 18 subjects and then convert it to the PPG signal.
Gaussian filter along with Asymmetric Least Square methods was applied to reduce the noise
of the PPG signal and then extract the features from it. Finally, the principal component
regression algorithm was applied to estimate the glucose level, and the standard error of
prediction (SEP) was 18.31 g/dL. In [47], same authors improved video data quality by
using various smartphone cameras and sensors. Four regression methods were employed to
measure the glucose level. The partial least square regression model performed better and
achieved the lowest SEP at 17.02 g/dL. The signal acquisition was simple and portable, but
the preprocessing was complicated, and models could not offer outperforming results.

In [39], the authors proposed a non-invasive blood glucose measurement system based on
smartphone video data and a machine learning algorithm. A smartphone camera with 28 fps
(sampling rate of 28 Hz) was used to collect 30—40 second long fingertip video data. Red,

green, and blue channels were extracted from video frames and converted to PPG signals. 67
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features were then extracted from the valid PPG signal and its derivatives. Finally, a subspace
KNN classifier was applied to estimate the blood glucose level. The overall testing accuracy
of the model was 86.2%.

Kavsaoglu et al. [42] introduced a non-invasive method to predict blood hemoglobin
levels using the characteristics of the PPG signals. In their study, a data acquisition card was
used to receive PPG signals from 33 subjects without taking any blood samples. At the same
time, blood count and Hb concentration were concurrently recorded using a device called
“Hemocue Hb-201TM”. Forty time-domain characteristics features were obtained from the
original PPG signal as well as its 1* and 2™ derivatives. For the estimation of Hb level,
eight different regression methods like Least Squares Regression (LSR), Generalized Linear
Regression (GLR), etc. were used. Besides, Correlation-based Feature Selection (CFS)
and RELIEF Feature Selection (RFS) techniques were applied to select the best feature set.
Among eight regression methods, the support vector-based regression model was performed
better compared to other models for prediction of Hb level.

In article [48], they developed a device called “Masimo Pronto” for screening (non-
invasively) the anemia in infants. The “Masimo Pronto” is a non-invasive care testing device
that can accurately measure the level of blood hemoglobin. They used the Masimo device
to collect Hb data from 97-children, and they also took venous Hb levels. For assessing the
accuracy and utility of the device, both invasive and non-invasive Hb levels were compared.
A correlation coeflicient of 0.47 was observed in the Masimo device with a sensitivity of
82% when the level of Hb was under 11.5 gm/dL. They also observed a negative predictive
value of 95%, and in this situation, the Hb concentration was 11 gm/dL.

S. Haxha and J. Jhoja [49] reported a non-invasive glucose monitoring system based on
image result for near-infrared spectroscopy to estimate the blood glucose levels. For this,
NIR transmission spectroscopy was used, and tests were performed both in vitro and in vivo.
To compare the performance of the proposed system, an invasive sensor, “TRUE result twist”
was used. Experimental research has proved a correlation between the voltage of the sensor
output and concentration of glucose, where the output voltage of the sensor increases as the
concentration of glucose increases. The proposed prototype of the non-invasive NIR-based
glucose sensor is considered as a low cost and showed a promising result in vitro. For
estimating the accuracy of the technique, multiple linear regression was used here, and the
R? term was equal to 0.96. But they faced some problems, as skin roughness and different
body fluids could impact on the performance of the model.

Hasan et al. [37] developed SmartHeLLP, a smartphone-based Hb level estimation tech-
nique using ANN and fingertip videos. The authors collected 10-second (300 frames) fingertip
video each from 75 participants of 20-56 year of ages and the levels of Hb were from 7.6
to 13.5 gm/dL. Red, Green, and Blue pixel intensities from each frame were separated for
feature extraction, and the ANN-based model was developed using these features to predict

the Hb level. They observed a correlation of R? 0.93. To reduce the necessary feature space,
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Table 2.1: Summary of several non-invasive techniques used for blood component levels
measurement (Hemoglobin, and Glucose).

Author(s) Purpose Device #Sub  Signal Algorithm(s) Performance
Al-Baradie and Hb HemoCue 10 PPG - PMRE = 0.56%
Bose [50]
Wang et al. [35] Hb Nexus-5p 31 PPG SVR R=0.82
Edward et al. Hb Nexus-6p 32  PPG LR R=0.62
[24]
Pai et al. [16] Gl FPGA 24 Spectra KBR RMSEP =9.64
Ramasahayam Gl FPGA 50 PPG ANN RMSE =5.84
etal. [41]
Anggraeni and Hb Asus Zen- 20 - LR R>=0.81
Fatoni [36] Fone 2 Laser
Chowdhury et Gl iPhone 7 18 PPG PCR SEP =18.31
al. [38] Plus
Zhang et al. Gl iPhone 6s 14 PPG KNN Acc=286.2
[39] Plus
Kavsaoglu et al. Hb  Hemocue 33 PPG CART, LSR, R?>=0.92
[42] Hb-201TM GLR, MVLR,

PLSR, GRNN,

MLP, and SVR
Hsu et al. [48] Hb Masimo 97 - Pronto SpHb R = 047,p —

Pronto SpHb value < 0.001

S. Haxha and J. Gl TRUEresult 5 Spectra MLP, LSR R?>=0.96
Jhoja [49] twist
Hasanetal. [37] Hb Nexus-4p 75 PPG ANN R%2=0.93
Glovanni et al. Hb iPhone 4s, 113 - KNN R=0.65
[51] Huawei p7
Dimauro et al. Hb Smartphone 102 - KNN Acc=0.982

[52]

* Hb = Hemoglobin, GI = Glucose, #Sub = Number of participant, SVR = Support Vector Regres-
sion, LR = Linear Regression, FPGA = Field-programmable Gate Array, KBR = Kernel-based
Regression, CART = Classification and Regression Trees, LSR = Least Square Regression, GLR
= Generalized Linear Regression, MVLR = Multivariate Linear Regression, PLSR = Partial Least
Squares Regression, GRNN = Generalized Regression Neural Network, MLP = Multilayer Per-
ceptron, KNN = K-Nearest Neighbour, Acc = Accuracy.

they identified a specific Region of Interest (ROI) in the image frame.

In [51], the authors designed a non-invasive system to detect the anemia using conjunctiva
image. Two smartphones, iPhone 4s and Huawei p7, were used to collect the conjunctiva
images. They collected data from 113 subjects both anemic and healthy, and K-nearest

neighbour classifier with 10-fold cross-validation used to determine the risk of anemia. They
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obtained a correlation coefficient results between 0.52 and 0.65.

2.5 Discussion

Table 2.1 represents several existing methods to estimate the different blood components,
such as hemoglobin, and glucose. Considering the existing literature, we observed that
digital image or video data of eye conjunctiva [36, 51] and fingertip [24, 35, 37, 38, 39] can
measure different blood components such hemoglobin, and glucose. It also shows that the
PPG signal contains potential information regarding different blood components. Though,
there are a lot of research has been done for the measurement of hemoglobin and glucose,
but only a few researches have been used smartphone camera for collecting data. Most of the
existing techniques use specific hardware, e.g., laser light and finger chip, to acquire the PPG
signal [41, 42] or spectra analysis [16, 49]. To sum up, there is up to now no non-invasive
method for measuring blood component levels based on PPG signal from a fingertip video,
which has the advantages of time efficiency and no calibration requirement. Therefore, we
propose a method to estimate hemoglobin and glucose using the smartphone video and deep

neural network models.
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CHAPTER 111

Theoretical Aspects

3.1 Introduction

For non-invasive measurement, optical properties of living tissue have been used for the
calculation of the difference in absorbance properties of blood constituents. The absorbance
properties can be measured in transmissive and reflective mode where various wavelengths
of light can travel through living tissues. In this chapter, we describe the modified beer-
lambert law, basic concept of photoplethysmogram (PPG) and different learning algorithms

for hemoglobin and glucose levels estimation.

3.2 Theoretical Foundations

3.2.1 Beer-Lambert law

Light absorbance can be measured by detecting changes in the transmitted and reflected light.
The changes in transmitted and reflected light mainly depends on structure, volume, medium,
thickness, refractive index of hemoglobin, absorption properties of blood and tissue [53].
According to Beer-Lambert law, the absorption of light is proportional to the concentration

of a medium and the path length, given by:

I, =1,e” "t (3.1)

where, I, is the measured light intensity, I, is the incident light intensity, « is the light
absorption coeflicient, C is the concentration of a blood component, and L is the light path
length. In our case, the finger has three different absorption’s for a wavelength of light (1)
due to Hemoglobin (Hb), plasma (P), and tissue (7'). So, the light absorption (under the
light wavelength A1) by a finger is:

Im 1= Ioe_L(a’ris.me,/l [T] +Qnemoglobin, A [HD] +Qplasma,a [P]) (3 2)

The variation in arterial thickness AL affects only the path length of hemoglobin and plasma.
The effect of tissue can be eliminated by measuring the ration of maximum and minimum

light intensity, given by:

Ip,

Taking the log of both sides of the equation, we can write:

IH’A _ eAL(ahemoglobin,/l [Hb] +Qplasma,A [P]) (3 . 3)
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Ina
1 = AL(a'hemoglobin,/l [Hb] + Aplasma,i [P]) (34)

In
L»

Finally, the absorption of the blood in each wavelength can be computed by (3.4).

3.2.2 Photoplethysmography

NIR-LED with Flash Light

Blood Flow (Pulse Wave)

Blood Vessels

-

»
>

Smartphone Camera
P Time

Figure 3.1: Photoplethysmography (PPG) principle by smartphone. PPG signal
generated from volumetric blood flow changes via light passing through the fingertip,
transmitting off of the tissue, and then passing to the smartphone camera’s image sensor.

Photoplethysmography (PPG) is an optical measuring technique used to measure volu-
metric changes in blood circulation [54]. Recently, PPG signals are widely used for vitals
psychological parameters monitoring. PPG systems are considered to be a low cost, con-

venient, and user-friendly which can be easily obtained by surface-sensing method with
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Figure 3.2: A typical two pulse PPG signal with its characteristic points. Here, x, y
portrait the amplitudes of systolic and diastolic peaks, respectively, and AT is the time
period between these two points. Aj/A; is the ratio of inflection.
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minimal contact or cameras with imaging techniques [55]. Conventionl PPG device gener-
ally comprises of a narrow wavelength light source (ie, light-emitting diodes [LEDs] with
certain colors such as infrared, red, or green) for illuminating the tissue and a a specific
photodetector to sense the reflected light through the skin [42]. Periodic variations in the
amount of light absorbed occur with blood volume, which can be utilized to obtain the PPG
signal. Now, numerous smartphone cameras have integrated sensors to assess the physio-
logical parameters based on the PPG signal. Smartphone camera in combination with the
NID-LED is able to detect these small variations in color caused by the blood flow. The
camera uses wide-bandwidth pixel-enabling color detection in the red, green, and blue range
(RGB-color). Figure 3.1 illutrates the generation of PPG signal due to the volumetric changes
in blood captured by smartphone camera. PPG is of either transmittance or reflectance type.
In the transmittance type, LED used as the light source is placed opposite to photo detector
while LED and photo detector are on same side in the reflectance type PPG. Figure 3.1 shows
transmittance type PPG, where LED and smartphone camera are on opposite side of the
finger. PPG has been applied in various clinical application, including heart rate monitoring
[25], anemia detection [42], heart-rate validation [30], blood pressure estimation [27] and
blood glucose level [31]. A typical two-pulse PPG signal with its characteristic points is
depicted in Figure 3.2.
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Figure 3.3: Light absorption in living tissue and variation due to blood volume [1].

Photoplethysmogram (PPG) is a signal which is optically obtained through a plethysmo-

graph used for detecting the volumetric variation through blood circulation [29, 22]. When
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light from LED is incident on living tissue, tissues and arteries mainly absorb it. Figure 3.3
shows light absorption from light source (LED) to receiver smartphone camera and resultant
PPG waveform which represents a quasiperiodic signal. The waveform mainly consists of
direct current (DC) component and alternating current (AC) component. First, the DC por-
tion is generated by the optical signals reflected or emitted from tissues and the average blood
volume of both arterial and venous blood, as presented in Figure 3.3. These components are
almost steady since the DC component does not change much with respiration. The second
part, the AC portion refers to differences in the blood volume of the cardiac beat synchro-
nization received from the blood vessels. Following cardiac blood circulation methodology,
the amount of blood in the arteries increases after the systolic period. On the other side of
the coin, the arteries shrink during the diastolic period, and the amount of blood in arteries
decreases. As a result, the intensity of the light received from tissues decreases at the time
of systole, and the light transmitted from tissues increases during diastole. In arterial blood,
the dynamic part of the signal is defined as AC signal and the static part is mentioned as a
DC signal, as shown in Figure 3.3. The change in light intensity per unit time is known as
the PPG signal.

3.3 Machine Learning Algorithms

A machine learning algorithm trains a machine to learn and apply acquired knowledge in
predictions. Most of the current hemoglobin and glucose estiamtion models use machine
learning algorithms. Here, we present a list of machine learning algorithms that we have used
as reference models to assess Hb and Gl levels non-invasively. Finally, we have developed
two seperate deep neural netwroks models for the estimation of Hb and Gl levels. Following

sections are the descriptions of estimators that we have used in our study as the models.

3.3.1 Linear Regression

Linear regression (LR) is one of the simplest and popular technique for data analysis. It has
tremendous use in biomedical field. The theorem behind every linear model is following
[56]:

(W, Xx) = wo+wWixX] +Woxp + ...+ WXy, 3.5

where, wog = intercept, w = wy,wy,...,w, are coeflicients and y = predicted value. The

optimization or loss function that we have to minimize is following:
. 2
min || Xw =113 (3.6)

3.3.2 Support Vector Regression

In support vector regression (SVR), the dataset are considered in high dimensional feature

space. It finds out the maximum margin in case classification using support vectors which
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can be called critical points of the dataset. Given a set of training samples as D = {x;,yi}}",
where, x; e R and y; € Y. In £ — SVR [57], the aim is to find a function f(x) with the most &
deviation from the actual y; for all training data and at the same time as flat as possible. The
relation between the input x; and output y; can be mapped using the regression function (3.7
and 3.8):

f(x) =Vi=wixi+woxo+ -+ WX +b 3.7

f(x) = wlx, where we X, beR 3.8)

Flatness in (3.7) means small w; therefore, the norm, ||w||2 must be minimized. Formally,

this problem can be written as a convex optimization problem [58]:

1
minimize §||w||2
yi—wai—st: (3.9)

subject to
wxi—b+y;<¢

where, the constraints are infeasible, called the soft margin formulation [59], we can introduce

the slack variables (&;,¢) and the formulation becomes,

1 m
minimize §||w||2+CZlfi+§;k
=1

yi-wlixi—b<e+& (3.10)

subject to {wlx;—b+y; < e+&;
fi,fgk >0

In (3.10), the constant C > 0, controls the penalty amount deviations larger than €. The

e-intensive loss function |£|. described by

. |
|§|g:{ Joelel<e 3.11)
€|

—& otherwise

According to the Lagrange multiplier and Karush—Kuhn—-Tucker conditions, the dual form is

transformed into an optimization function [60].
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. 1 m m . i m i m i
min > ZK(x,-,x,)(ai—a,-)(aj—aj)+eZ(ai+a,->—Zlyi(a,-m,-)
=

i=1 j=1 i=1
st. 0<a,af <C i=1,....m (3.12)

i(ai—a;") =0
i=1

The kernel functions transform the data into a higher dimensional feature space to perform
the linear separation. ¢(x;) mapped the data into a higher dimensional feature space [58].

The standard SVR to solve the approximation problem is

N
Foi) = (@i—a))K (x;,x) +b (3.13)
i=1

where, @;, a are Lagrange multipliers. The kernel function K (x;,x) can be defined as linear

dot product of the nonlinear mapping, e.g.,

K (xi,x) = (xi) g (x) (3.14)

From the above discussion, the SVR quality is affected by the penalty parameter C, the
non-sensitive loss &, the kernel function, and the parameters of the kernel. The radius basis

function (RBF) kernel function is used in this experiment as follows:
K (xi, ) = exp (=yllxi = x11%) (3.15)
where, y is width parameter of RBF kernel [61].

3.3.3 Artificial Neural Network

A the initial stage, a gradient descent backpropagation neural network was used in this study.
It comprises of three layers: input layer, hidden layer, and output layer. Figure 3.4 illustrates
the structure of our proposed ANN model. There are 36 features used to feed the ANN model
in the input layer. In the hidden layer, there are 73 neurons with the ReLLU activation function,
while in the output layer, there is just one neuron with a linear activation function. The total

number of nodes in the hidden layer determines as in (3.16).

L=(n+1) (3.16)
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Figure 3.4: The architecture of proposed ANN models for Hb and Gl levels estimation.

where L is the number of hidden nodes and # is the number of input nodes. The output of

each node in hidden layer is calculated using the (3.17).
Uj = Za),—joj+ﬁj (3.17)

where w;; are the weights of each nodes and g; is the bias. The hidden layer will change the

input using the RelLU activation function as in (3.18).
o; =max(0,v)) (3.18)

Finally, at the output layer, a linear activation function is applied. The ANN model was
trained on 100 epoch and 32 batch size. In order to ensure the model’s validation, a 10-fold

cross-validation procedure was used.

3.3.4 Deep Neural Network

Deep neural network (DNN) is a feed-forward, artificial neural networks comprising an input
layer, several hidden layers, and an output layer. It is equipped with biases, weights, and
activation functions such as a rectified linear unit (ReLU) [62]. The input layer consists of
neurons equal to the number of features in the dataset, and the output layer is composed of
a single neuron [63]. In this work, we explored a multilayer feed-forward network, where

nodes of each layer receive the inputs from the previous layer. The output of nodes in one
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layer will be the input of the next layer. The architecture of our proposed DNN model is
shown in Figure 3.5. As shown in Figure 3.5, two neurons make up the output layer, while the
input layer has as many neurons as the number of features. There are a total of four hidden
layers: the first has 150 neurons, the second has 200 neurons and a dropout unit of 0.25,
the third has 250 neurons, and the fourth has 300 neurons and a dropout unit of 0.5. The
dropout method is an alternative and more efficient option for addressing DNN overfitting
[64]. Suppose H hidden layers of neural network. Let 4 € {1,2,---,H} index of the hidden
layers of the network. Let f") specify the inputs vector for layer A. At layer i, 0™ and g
are the weights and biases, respectively. Each neuron’s hidden layer output can be expressed
as in (3.19).

Uj(h+1) — Z a)j(h)f(h) +ﬁj(h) (3.19)

J

;‘.‘ f’o
\\' /) 1" \\\\ ‘

d W ¥ ,l '\“‘ '
\\w .» 1\' \” ‘ 4\ /) 0‘\&\\\

‘Q"z‘ X @ &\\V“/' «\\ .
NFP

Inout laver: First hidden Second hidden Third hidden Fourth hidden
put layer: h . . - Output
all features layer with layer with 200 layer with layer with 300 Layers
or selected 150 neurons. neurons. 250 neurons. neurons. Acti !
N S - o ctivation
features with Activation Activation Activation Activation .
- P » - PR » Function
MIC Function Function “ReLU”. Function Function “ReLU”. Linear
“ReLU” Dropout 0.25. “ReLU”. Dropout 0.5.

Figure 3.5: The proposed architecture of DNN model for Hb and Gl levels measurement.

Using the learning rate A, the following equation is used to iteratively update the weight
and bias vector [65].

((x)h+1,ﬂ(h+1)) — (O)h,ﬂ(h)) -2 (320)

Using the RelLU activation function, the hidden layer neuron will modify the input above as
in (3.21).
@re(v) = max(0,v) (3.21)
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Finally, at the output layer, a linear activation function is employed.
i =v (3.22)

where v/ = (—o0,+00). Thus, the dense layer returns the sum of the activation function.

3.4 Conclusion

Photoplethysmography is an optically obtained plethysmogram that can be used to detect
blood volume changes. In this chapter, we have presented how the smartphone camera,
combined with the NID-LED, can detect these small variations in colour caused by blood flow.
We have also described the various machine learning algorithms and deep neural network
models. The detail of the proposed method from data collection to models development is

presented in the next chapter.
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CHAPTER 1V
Proposed Method for Blood Component Estimation

4.1 Introduction

In this chapter, our proposed methodology is explained. The collection of fingertip video
from the human subjects using a smartphone, generation of the PPG signal, selection of
best PPG cycle, extraction of features from PPG signal, selection of optimal feature set
using maximal information coefficien technique, and construction of DNN based model are

briefly described throughout the chapter. The overall architecture of our proposed system are
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depicted in Figure 4.1.
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Figure 4.1: Overall functional block diagram of the proposed method.

4.2 Hardware Configuration

The proposed hemoglobin and glucose measurement system needs a data collection kit to

illuminate the finger and a smartphone to collect the video. Conventionally, PPG signals are



24

acquired using optical techniques like sensor-based device or chip. In these cases, visible
or NIR-LED are used for illuminating the finger or different parts of body tissues and a
photodetector for measuring the amount of light either transmitted or reflected. Therefore,
we aim to obtain PPG signals through the use of the smartphone camera to capture fingertip
video and then analyzing the variation of light intensity reflected from a finger caused by the
change of blood volume in systolic and diastolic cycles. Although some new smartphones are
starting to be equipped with sensor or IR LEDs, the most smartphone have only white LED
and do not have sensors for detecting the reflected/transmitted light. External lights, near-
infrared lights, are required when a smartphone has no support to sense blood components
non-invasively in living tissues. For fingertip-based data collection, we pointed out that
a covered external NIR light source can provide the best PPG signal from a smartphone
video. But the selection of near-infrared wavelength is the first step of hardware design and a
critical issue to acquire the strong and clean PPG signal because we have to take wavelength
as consideration for the absorption of light by blood, muscle, and skin tissues. From the
study of several previously existing techniques, it is observed that most of the works used
475 — 2500 nm wavelength light for acquiring the PPG signal. For example, Ramasahayam
et al. [41] used 935 nm, 950 nm, and 1070 nm NIR-LED to acquire the PPG signal for
estimating Gl level. In HemaApp [24], 880 nm and 970 nm, as well as 500-700 nm and 1300
nm NIR-LED, were used to measure the blood Hb concentration in two different studies.
Al-Baradie and Bose [50] developed a LED-based Hb sensor system for acquiring the PPG
signals at the wavelengths of 670 nm and 810 nm. Light absorbed of NIR wavelength range
from 700 — 2500 nm by tissues [23] is considerable to get the strong PPG signal as well as
it can penetrate through the tissues of the finger between 1 —2 cm effectively [66]. In the

NIR region, light absorption is lower than the other spectral areas for oxy-hemoglobin and
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deoxy-hemoglobin. Considering availability and financial restraints, it is easiest to get the
near-infrared LED with 850 nm wavelength for our purpose. The data collection kit consists
of circle with eight NIR-LED, and a white LED in the centre, as shown in Figure 4.2 (b). The
function of the white LED is to amplify the intensity of NIR-LED. The external surface of
the device is made to black so that the reflectance factor can hardly affect the analysis. Figure

4.2 illustrates the prototype of the data collection kit.

4.3 Video Data Collection

A 15 second long video of the right index finger was recorded using a smartphone’s primary
camera (Nexus-6p, 30 fps), while the finger was illuminated using the data collection kit.
Simultaneously, the gold standard blood hemoglobin and glucose of these subjects were also
collected using the clinical method. These two procedures were performed consecutively but
separately (with an interval of less than one minute). Therefore, the blood component levels
didn’t change quickly. The reference standard value for hemoglobin was determined using
the Sysmex XS-800i hematocrit analyzer, and the glucose value was measured with Thermo
Scientific Konelab 60i, respectively, in the clinical laboratory. The authorities and medical
teams of the Medical Centre Hospital, 953, O.R. Nizam Road, Chattogram, Bangladesh,
approved the study. The blood sample of each subject for clinical measurement was collected
just before taking the fingertip video. In the whole procedure, 93 subjects (59 males and 34
females; age: 32.67 + 16.53 years) participated. The age and gender of the subject were also
collected during the data collection process. The statistical information of the data collection

is shown in Table 4.1. More details about the dataset is preseneted in Appendix Table A.1.

Table 4.1: Statistical inforamtion of clinical laboratory data.

Physical Index Statistical Data

Age (years) 0to79 (u=32.81,0 =16.57)
Gender 59 male (63.5%); 34 female (36.5%)
Hemoglobin (g/dL) 7.91021.49 (u=12.933,0 =2.137)
Glucose (mmol/L) 3.33t021.11 (u=6.64,0 =2.97)

* . .
M = mean, o = standard deviation

Data collection is one of the vital stages of conducting research. Data can be corrupted
within a moment for a simple mistake and affect all the next processes. The following
guidelines were followed while recording the fingertip video.

* The subject’s right fingers were clean and dry before capturing the fingertip video.

* The index finger was preferred, but other fingers were used according to the condition

of the tissue if the index finger was injured.

* The fingertip video was recorded after taking clinical blood sample.
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Figure 4.3: Fingertip video data collection kit/device: (A) NIR-LED device with power
off, (B) NIR-LED device in turned on condition, (C) Index finger on the device while
turned on, and (b) Video recorded with a Nexus-6p smartphone.

» External wearable device was constructed in a user-friendly manner so that participants

can easily place the finger on the device.

» Same conditions (room temperature and light) were maintained during the acquisition

of data from any participant.

After reviewing all the facts, the index finger was placed in the data collection kit during
the recording period, as shown in Figure 4.3 (C), and the fingertip video was captured while
the finger was illuminated, as shown in Figure 4.3 (D). Finally, a 15 second video was
captured, placing a smartphone primary camera on the finger, according to Figure 4.3. The
first 3 second and the last 2 second are discarded from each fingertip video to avoid unstable

frames.

4.4 Generation of PPG Signal and Preprocessing

Photoplethysmogram (PPG) is a signal which is optically obtained through a plethysmograph
used for detecting the volumetric variation through blood circulation [29, 22]. It reflects
the movement of blood from the heart to the fingertip. According to heart blood circulation
patterns, arteries carry more blood in the systolic period than the diastolic period. As aresult,
absorber (blood) of light in the tissue with arteries varies with these two blood circulation
period. During the systolic period, the diameter of arteries is higher than the diastolic period
and light passes through a longer path. In contrast, light passes a shorter path during the
diastolic period. For these reasons, the light intensity is changed with time and the pattern is
called PPG-wave. For generating the clean and good PPG signal from the image frame, the
selection of optimal Region of Interest (ROI) is indispensable [67, 68]. To identify the ROI,
HemaApp [35] used a centre segment of the frame of an image and calculated the average
intensity for each channel of the centre segment of that image, Scully et al. [69] picked
50x 50 array of pixels on the green channel and Jonathan et al. [70] extracted 10 x 10 block
of the mean intensity value of the pixels from the central region. SmartHeLLP [37] separated
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a 10x 10 pixels block from the image frame for identifying the best generated PPG signal’s
most adequate position. In this study, the average intensity for each channel is calculated by
cropping image frame of 500 x 500 pixels from right to left section of the image. This is done
because the image from this section is the most consistent and stable when the video of the
fingertip is captured with the smartphone. Frame separation and cropping 500x500 pixels

from each frame are graphically illustrated in Figure 4.4.

Video Frame Sequence

290 Pixels
7}}%

1920 x 1080 Pixels

Figure 4.4: Frame separation and cropping ROI. Crop 500 x 500 pixels from the middle
of right side from each frame.

As the PPG signal reflects the movement of blood from the heart to the fingertip, the
characteristics of the PPG signal can provide information on the levels of blood constituent
[71,42]. Therefore, it is necessary to identify appropriate preprocessing and feature extraction
methods to analyze the PPG signal precisely [72]. Blood’s absorption of light is related to the
variation in finger blood volume, which is reflected and captured in the video. Consequently,
the same region’s pixel intensity in successive frames is different. The most commonly
applied method for obtaining the PPG signal from a recorded video sequence is calculating
the mean brightness of a particular color channel in each frame, leading to the desired signal.
Subsequently, the raw signal is processed with the objective of extracting the meaningful
variations in intensity caused by the periodic propagation of blood pulse waves through the
arteries [73]. A video data comprises a series of digital images called frames. A 15-second
(30 fps) video is a series of 350 frames. The first 3 seconds (frame number 1 to 90) and
the last 2 (frame number 291 to 350) seconds of each video are discarded due to unstable
frames. The red (225 —245), green (0 — 3) and blue (15 —25) channels are extracted from
individual frame of the video. The intensity of the red channel is the highest among the three

channels. Therefore, other channels are discarded. The continuous PPG signal is calculated
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by overall pixel intensity variations in each frame. In this study, the PPG value of the i

frame is calcuated in two ways.
» In the first step, for each video frame, the PPG value of the i frame is measured by
(4.1) as the mean of the pixels. The PPG signal is acquired by plotting the computed

mean of pixels from frames as shown in Figure 4.5.

total_pixels

Z intensity; 4.1

i=1

1

PPGli]| = ———
L total_pixels

* In the second step, an adaptive threshold is defined as sum of half the minimum
brightness and maximum brightness of i frame. The threshold value is selected
empirically. This threshold is used to reject erroneous frames, i.e., frames that are too

dark due to incorrect placement of the finger on the camera and NID-LED. Therefore,

238
|— Red Channel Signal |

236 ﬂ

234

Mean of Pixels

232

0 50 100 150 200 250 300
Frames (30 frames/second)

(a)

|— Preprocessed PPG Signal |

i

0 6 8 10
Time (S)
(b)

Figure 4.5: Generation of PPG signal from fingertip video using the mean of pixels of
each frame: (a) raw PPG signal from fingertip video, (b) filtered PPG signal.
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Figure 4.6: Generation of PPG signal from fingertip video using the mean of pixels of
each frame above threshold: (a) raw PPG signal from fingertip video, (b) filtered PPG
signal.

the PPG value of the i frame is measured by (4.3) as the mean of the pixels with
intensity above the specific threshold. The PPG signal is acquired by plotting the

computed mean of pixels from each frame, as shown in Figure 4.6.

1 . .
threshold; = E(intensilyﬁnax +intensity!, . ) (4.2)
1 total_pixels
PPGli] = W Z intensity; > threshold; (4.3)

i=1
Before feature extraction, the raw PPG signal was preprocessed to minimize noise and
motion artifacts. Then, the Butterworth bandpass filter [74] was applied to the generated PPG
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Algorithm 1: Generation of PPG signal from fingertip videos using the mean of
pixels of each frame above threshold

1 Input: N-number of videos
2 Output: PPGSig-generated PPG Signal

/% For NIR-0850 lighting condition, capture 15sec(30£fps)
videos with Nexus-6p smartphone

3 fori—1toN do

10
11
12
13

14
15

16
17

18

19

20

/* First 60 frames (2s) and last 90 frames (3s) are

discarded

Extract only 300 frames for each video;

/* Initialization list: ListH

List of select highest intensity channel ListH;
for j < 1 to 300 do

/* Calculate the threshold value for each Frame;
threshold; = 0.5 (intensit)/,.mx + intensit)/r.nin);
/* Calculate MeanR, MeanG, MeanB
Average value of red channel MeanR;
Average value of green channel MeanG;
Average value of blue channel MeanB:;
for k — 1to3do
if channely, is red AND channely, > threshold; then
L MeanR < average intensity for red channel from Frame;;

else if channely is green AND channely > threshold; then
L MeanG « average intensity for green channel from Frame;;

else
L MeanB < average intensity for blue channel from Frame;;

/* Calculate maximum value of channels

MaxvalC < max(MeanR,MeanG,MeanB);

/% Append maximum value from three channels to list:
ListH

ListH; < MaxvalC;

/* Generate PPG signals: PPGSig;
| PPGSig; < butterworthFilter(ListH);

21 return PPGSig

signal with frequency per second (fps) = 30, minimum blood pulse per minute (BPM_L)=
40, maximum blood pulse per minute (BPM_H) = 220, and order = [2, 3, 4, 6]. Nyquist
frequency is as half of the frame per second (fps/2), which is equivalent to 30/2=15. There-
fore, Lower-frequency (lowcut) = (BPM_L/60) X (2/fps) and Higher-frequency (highcut) =
(BPM_H/60) x (2/fps). The order is selected empirically. The preprocessed PPG signals
using Butterworth bandpass filter with various order are shown in Figure 4.7. From Figure

4.7 ((a) and (b)), it is shown that the dicrotic notch and diastolic peak are not properly found

when using orders 2 and 3 respectively. On the other hand, the dicrotic notch and diastolic
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Figure 4.7: Preprocessed PPG signal using Butterworth bandpass filter with different
order.
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peak are found properly when using orders = 6 but it decreases the amplitude of the PPG
signal (Figure 4.7(d)). In this work, the Butterworth bandpass filter performs better with
order = 4, and the preprocessed PPG signal looks close to the ideal PPG signal as shown
in Figure 4.7(c). The pipeline of the PPG signal generation from video data is described
algorithmically in Algorithm 1.

4.5 PPG Cycle Selection and Feature Extraction

In this study, one single PPG cycle is needed to extract the features. PPG signals are
continuous and repetitive waveforms that usually contain the same information. A peak
detection algorithm was applied to detect each systolic peak. Therefore, PPG signals were
segmented into single cycle period from 10s time_frame PPG signal, representing a single

heartbeat. Each single-period PPG signal might look relatively different for each person, but

Algorithm 2: PPG cycle detection and selection algorithm

1 Input: Series of continuous PPG signal Sppg
2 QOutput: Best single PPG cycle Bppg

3 Listc — ¢ ;
/¥ Listc < list of valid cycle %/
/* Cycle Detection %/

4 while time_frame > 10 do

/% Duration of each PPG signal is 10s */

5 Detect each cycle Cppg in Sppg as follows: ;

6 Consider starting point (S,), dicrotic notch (z), and ending point (E,,) are

consecutive minima (M,);

7 Consider systolic peak (x), and diastolic peak (y) are consecutive maxima

(My);

8 Use find_peak from the NumPy module of python to detect the peaks of PPG
signal and reduce the search time;

/* Valid PPG cycle check */

9 if Cppg contains (M,,M,) then

/* PPG cycle must has typical critical features like
systolic peak, dicrotic notch or diastolic peak. */
10 if x is greater than y and z is greater than (S, E,) then
1 ‘ Listc < Listc U Cppg;
12 else
13 | Discard Cppg;

14 else
15 L Discard Cppg;

/* Cycle Section y
16 Bppg < max,(Listc);
/* PPG cycle Listc with the maximum systolic amplitude x */

17 return Bppg;
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they all have the same characteristics. Normally, 10s time_frame PPG signals contain two
or more cycles, and the best one PPG cycle (Bppg) was detected automatically by using the
peak detection algorithm in Algorithm 2. In a PPG cycle, starting point, dicrotic notch, and
ending point are consecutive minima and systolic peak, and diastolic peak are consecutive
maxima points. If a PPG cycle contains consecutive maxima and minima, it is a valid PPG
cycle. All the valid PPG cycle Cppg are stored in a list. Therefore, Cppg with the highest
positive systolic peak is extracted from the Sppg because of its highest intensity changes. The
selected PPG cycle Bppg in a Sppg is depicted in Figure 4.8. This single PPG cycle Bppg

was analyzed to extract characteristic features.
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(b) Selection of single PPG cycle

Figure 4.8: Detection and selection of one single PPG cycle from continuous waveform
of PPG signal.

After selecting the best PPG cycle, 34 features were extracted from Bppg, its first deriva-
tives (velocity-PPG’ or VPPP), and its first derivatives (acceleration-PPG” or APPG), as well



34

as Fourier transformation [75, 76]. The extracted features are divided into four categories:
amplitude related features (f] to fs, fi5 to fig, and f>3 to f>5), time domain features (fs to f1»,
f19 to f22, and fo6 to fog), frequency domain features (f>9 to f34) and other features (fi2 to fi4).
Additionally, Age (f35) and Gender (f3¢) are added to the feature set. Block diagram of the

feature extraction process is depicted in Figure 4.9. Extracted features are described below:

Acquisition of PPG signal
Preprocessing
L d d? |
= (Bppc) a2 (Bppc)
i v e
Fast Fourier i
:\ Transformation

v
N
Time and Frequency Domain
Feature Extraction
J

Figure 4.9: Block diagram of feature extraction.

The features extracted from the Bppg signal are graphically illustrated in Figure 4.10 and
described below:

(f;) Maximum slope: Amplitude at maximum slop on the up-rise of the PPG signal. ¢
denotes the maximum slope in Figure 4.10.

(f,) Magnitude of systolic peak: Systolic peak is the maxima of a PPG wave [77]. x
denotes the magnitude of systolic peak in Figure 4.10.

(f;) Magnitude of diastolic peak: The diastolic peak is the continually first maxima after
systolic peak [77]. y denotes the magnitude of diastolic peak in Figure 4.10.

(f;) Magnitude of dicrotic notch: Inside the PPG wave, there is a time-split diverse
between systolic and diastolic cardiac levels to create a dicrotic notch. z denotes the
magnitude of dicrotic notch in Figure 4.10.

(fs) Magnitude of inflection point: Point of the inflection in the PPG pulse is determined
by the local maximum in the first derivative wave after the first peak. d denotes the
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Figure 4.10: The characteristic features acquired from the Bppg signal.

magnitude of dicrotic notch in Figure 4.10.

Max. slope time: In the horizontal axis, time to maximum slop on the up-rise of the
Bppg signal. It is denoted as #; in Figure 4.10.

Systolic peak time: In the horizontal axis, from the start of wave to systolic peak is
known as systolic peak time. It is denoted as #, in Figure 4.10.

Dicrotic notch time: In the horizontal axis, from the start of a wave to dicrotic notch
is known as dicrotic notch time. It is denoted as #3 in Figure 4.10.

Inflection point time: In the horizontal axis, from the start of a wave to inflection
point is known as inflection point time. It is denoted as #4 in Figure 4.10.

Diastolic peak time: In the horizontal axis, from the start of a wave to diastolic peak
is known as diastolic peak time. It is denoted as #5 in Figure 4.10.

Pulse Interval: The length involving start and end of PPG wave. pulse interval is
denoted by #,; in Figure 4.10.

Pulse width at half amplitude: It is denoted by w is shown in Figure 4.10. Awad
et al. [78] used the pulse width as the pulse width at the half height of the systolic
peak. They have suggested that the pulse width correlates with the systemic vascular
resistance better than the systolic amplitude.

Inflection Point Area ratio (IPA): The pulse region within the PPG wave is considered
as the entire area. Pulse area has been split into two areas at inflection point, area A{+A;
and area A3 (Figure 4.10) [79]. The ratio of the two areas can be utilized as an indicator

of the entire peripheral resistance [80]. This IPA can be defined as follows:
IPA =A3/(A1 +A2)

Stress-induced vascular response index (sVRI): The sVRI used as a cognitive load
and stress indicator is described as the proportion of two areas at the systolic peak that
divided the pulse area (Figure 4.10) [55]. sVRI is calculated from the PPG signal and
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can be defined as follows:
sVRI = (A2 +A3)/A1

The first derivative is hardly used in literature. The first derivative PPG is also known as
velocity plethysmogram (VPPG or PPG’). The features extracted from the fist derivative of
the Bppg signal are graphically illustrated in Figure 4.11 and described below:

— 1st Derivative

Amplitude

Figure 4.11: The characteristic features acquired from the first derivative of Bppg signal.

(f15) a;: First peak of the volume change velocity. a; denotes the first peak intensity of
VPPG in Figure 4.11.

(f16) by: First valley of the volume change velocity. b; denotes the first valley intensity of
VPPG in Figure 4.11.

(f17) e1: Second peak of the volume change velocity. e; denotes the second peak intensity
of VPPG in Figure 4.11.

(f13) I;: Second valley of the volume change velocity. /; denotes the second valley intensity
of VPPG in Figure 4.11.

(f19) 14, Interval time from begining to point a; for first derivative of Bppg.

(f20) tp,: Interval time from begining to point b for first derivative of Bppg.

(f21) t.,: Interval time from begining to point e for first derivative of Bppg.

(f22) #,: Interval time from begining to next point /; for first derivative of Bppg.

The second derivative is more commonly used than the first derivative. The second
derivative of PPG is also referred to as the acceleration plethysmogram (APPG or PPG”)
since it is an indicator associated with the acceleration of the bloodstream in the finger [81].
The features extracted from the second derivative of the Bppg signal are graphically illustrated
in Figure 4.12 and described below:

(f23) ay: First peak of the volume change acceleration. a; denotes the first peak intensity of

APPG in Figure 4.12.
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Figure 4.12: The characteristic features acquired from the second derivative of Bppg
signal.

(f24) by: First valley of the volume change acceleration. b, denotes the first valley intensity

of APPG in Figure 4.12.

(f25) ep: Second peak of the volume change acceleration. e, denotes the second peak
intensity of APPG in Figure 4.12.

(f26) t4,: Interval time from begining to point a, for APPG.

(f27) tp,: Interval time from begining to point b, for APPG.

(fg) 1.,: Interval time from begining to point e, for APPG.

The Fast Fourier Transformation (FFT) is used to extract amplitude and frequency domain
features from the Bppg wave. Only first three component from the FFT were considered.
These tell us the dominant frequencies in the cycle. The features extracted from the FFT of

the Bppg signal are graphically illustrated in Figure 4.13 and described below:
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Figure 4.13: Illustration of frequency-domain features from fast fourier transformated
Bppg signal.

(f29) fpase: Fundamental component frequency acquired from FFT of the Bppg signal.
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(f30) |Spase|: Fundamental component magnitude acquired from FFT of the Bppg signal with
respect to fpase-
£31) fonas 2" Harmonic frequency acquired from FFT of the Bppg signal. Such that,

f base <f 2nd -
(f32) |sonq|: 2"¢ Harmonic magnitude acquired from FFT of the Bppg signal with respect

fona-

(f33) f3at 3" Harmonic frequency acquired from FFT of the Bppg signal. Such that,

fbase <f2nd <f3rd-
(£34) |s3nq]: 3@ Harmonic magnitude acquired from FFT of the Bppg signal with respect

f3rd-

Finally, the demographic features are described as below:
(f35) Age: Age of the participant (in year). Types and range of glucose level varies with age
of the person.
(f36) Gender: Gender of the participant (1 for male, O for female). The normal range for

hemoglobin level depend on the age and gender of the person.

4.6 Feature Selection

Feature selection is the most important step before model construction as the prediction
power of a model depends on the features. Redundant, irrelevant or partially relevant
features can negatively affect model performance. There are several benefits of performing
feature selection before developing the model. Firstly, it reduces over-fitting opportunities
by discarding redundant features. Secondly, this process discards irrelevant features, which
reduces misleading opportunities and improves model accuracy. Lastly, it reduces the number
of features, hence reduces the complexity of the algorithm and model train faster. There are
a number of feature selection methods for feature selection. In this study, the Maximal
Information Coefficient (MIC) technique has been applied to determine the optimal feature
set. MIC is a theory-based information measure of reciprocal dependency that may account
for various functional and non-functional dependencies between variables [82]. Using this
approach, the relationship between the input features and the target variable is established.
The highest-scoring attributes are selected as those are most probable to have the most
influence on the estimation results. For two discrete vectors, mutual information MIp(F, O)
is defined as:
MIp(F,0) = P(f,0)lo m 4.4
b(F.0) Zg; (.o log( 5y 5es) (4.4)
where, P(f,o0) refers to the joint probabilistic mass function of f and o. The marginal

mass functions of f and o are P(f) and P(0). For continuous variables, mutual information
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Ml (F,O) is formulated as follows:

P(f,0)

P()Plo ))dfd 4.5)

MIc(F,0) = / / P(f,0)log(
where, P(f,0) denotes the associated joint probabilistic density and marginal probabilistic
density functions are P(f), and P(0), respectively. Directly calculating the probabilistic
mass function can be a useful tool for assessing the dependence of two continuous variables;
however, itis not always straightforward to do so. So, providing a maximal mutual information
searching approach and an optimal data binning method, MIC was created to overcome this
problem [83]. Meanwhile, the mutual information can be normalized to a scale from 0 to
1 with the help of MIC, making it easier to evaluate the dependencies and co-relationships
between two variables. Consequently, for each pair of colinear features, we eliminated the
features with the lower MIC value against hemoglobin and glucose levels, and allowed the
other features for further analysis.

The best feature subsets obtained using MIC for blood component levels for various score
are tabulated in Tables 4.2, 4.3 and 4.4, respectively. Figure 4.14 demonstrates the score of
each features against the output level. To select the optimal feature set, the score value is
selected emprically. To select the optimal feature set, the score value is selected empirically.
In this study, the score value is set as 0.45, 0.5, and 0.55, respectively. We obtained 28
features for hemoglobin and 29 for glucose, respectively, for score >= 0.45, as shown in Table
4.2. Similarly, for a score >= 0.5, we acquired 22 features for hemoglobin, and 21 for glucose
shown in Table 4.3. Finally, for a score >=0.55, only 8 features were obtained for hemoglobin
and 9 features for glucose. When we have chosen features with a score >=0.45 or less, the
optimal feature set is close to the original feature set. Hence, it does not influence the results
to a large extent. On the other hand, when we have chosen features with a score >=0.55 or
more, it discards most of the essential features. Therefore, in this study, the optimal feature

sets for hemoglobin and glucose levels are selected using a score >= 0.5.
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Figure 4.14: Importance analysis for input features: (a) Hemoglobin, and (b) Glucose
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Table 4.2: Selected features using MIC algorithm for hemoglobin and glucose levels
when score >= 0.45.

Dataset Selected Features Count
h L B fa fs fo fi fio iz ha fis fie fiz )3
Hemoglobin | fis  fio fa1 f3 faa s s f1 fas foo fr2 friz foa
S35 f36
oo fs fo 1 fs foo fio fiz fis fis fis fie 29

Glucose fiz fis fio fao far S fa3 faa fos e f21 fas 3o
2 faa S

Table 4.3: Selected features using MIC algorithm for hemoglobin and glucose levels
when score >=0.5.

Dataset Selected Features Count
. h R B fa fs fo f1 fio fiz fis fis fio S
Hemoglobin 22
3 fa fos e o1 o 2 fis f3e
B s ofe i 8 fo fio fiz fiz fis fie fir fi8
Glucose 21

flo fa s fe o1 fro f2 f

Table 4.4: Selected features using MIC algorithm for hemoglobin and glucose levels
when score >= 0.55.

Dataset Selected Features Count
Hemoglobin | fi fo f5s fu fi3z fos fae fro 52 fis fre | 11
Glucose fs fo f1 fie fis faa S5 fao 8

4.7 Model Construction and Validation

At the first stage, the ANN models were developed to estimate the hemoglobin and glucose
levels. The models were trained with 100 epochs, 32 batch size, and a learning rate of 0.01.
The hyperparameters used in the proposed ANN models are shown in Table 4.5.

Furthermore, two independent models using deep neural network were constructed for
more accurate estimation of hemoglobin and glucose levels. The DNN models were trained
with 100 epochs, 32 batch size, and a learning rate of 0.01. To facilitate the training processing
and update the parameter of parameters of DNN, Adam was used as optimizer function. The
hyperparameters used in the proposed DNN based models are shown in Table 4.6. The DNN
models were trained and tested with both all features and MIC-based selected features for
each blood component level.

The K—fold cross-validation (KCV) is one of the most popular methods that can be used

for selection and evaluation of the performance of machine learning techniques with less
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Table 4.5: Hyperparameters and their values used in ANN models.

Parameters Status
Batch size 32
Learning rate « 0.01
The number of hidden layers 1

The number of nodes at hidden layer 73
The number of nodes at input layer 36 or optimal feature set
The number of node at output layer 2

Activation function ReLlU, Linear

Table 4.6: Hyperparameters and their values used in DNN models.

Parameters Status
Batch size 32
Learning rate o 0.01
The number of hidden layers 4

The number of nodes at 4 hidden layers (150, 200, 250, 300)
Dropout at 2nd and 4th hidden layers (0.25,0.5)

The number of nodes at input layer 36 or optimal feature set
The number of node at output layer 2

Activation function ReLlU, Linear
Optimizer Adam

variance than a single split train test set [84, 85]. It is operated by dividing the data samples
into K-parts (e.g., K =5 or K = 10) [86]. In this study, the 10-fold cross-validation method
is used to construct and evaluate the performances of DNN models. At first, reference Hb
values and PPG characteristics features (age and gender were also included as features) of
93 subjects are divided into 10 almost equal subgroups or folds to train and test the model.
In each iteration, 9 subgroups are used for training the model, and the rest one is used for
testing the model. This process went on until 10 iterations are completed. After 10 times of
training and testing, the reliable Hb estimation model was established. The same procedure
was followed for the remaining DNN models to estimate Gl level. The final performance

metric is determined as in (4.6).

K
1
Eu = X ZIE" (4.6)

where, E); is the final evaluation metric for each model and £, € R, n=1,2,...,K is the
evaluation metric for each fold. To investigate the competency of the new developed model,
the dataset are also trained with classical regression methods such as linear regression (LR),

and support vector regression (SVR) using the same input conditions as ANN and DNN
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models.

4.8 Conclusion

In this chapter, we have presented a non-invasive hemoglobin and glucose levels assessment
process using the PPG signal generated from a fingertip video, which was captured using a
smartphone under near-infrared LED light. Analyzing the PPG signals, we have extracted
characteristic features from PPG signals and its derivatives as well as Fourier Transformed
signals. Finally, we have applied features selection algorithms to select optimal feature set and
fed to developed models for estimation. In the next chapter, we will present the experimental
analysis of our proposed method.
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CHAPTER V
Experimental Results and Discussions

5.1 Introduction

In this chapter experimental analysis, performance and effectiveness of the proposed method
will be explained briefly. Finally, the estimation accuracy of the proposed system is compared

with other prominent works to validate the performance of our proposed system.

5.2 Experimental Setup

The results presented in this work are generated using a single computer (Asus X556U,
Intel® Core(TM) i5-72000U, central processing unit with 2.50GHz, 8.0 GB Random
Access Memory, and Nvidia GeForce 940MX) with Windows — 10 operating system. The
machine learning and deep neural network models are implemented in Python 3.6 with a

computing environment named Spyder, available in Anaconda.

5.3 Performance Measurement Metrics

The performance of our proposed method is evaluated using four indices such as coefficient
of determination (R?), mean absolute error (MAE), mean squared error (MSE), and root
mean square error (RMSE). If 01, 07, - - -, 0, are n reference values and 01, 02, - - -, 0, are the
corresponding estimated values, then the mathematics formulas are as follows:
» R%: A statistical measure of how close the data are to the fitted regression line. The
coeflicient of determination is a measure that evaluates the ability of prediction of a

model. .
i (0i=0;)

RZ = 1 - ”—_2
Zi=1(0i —0)

(5.1)
where, 0 = ,11 20'1 0;

* MAE: A error metric corresponding to the expected value of the absolute error or loss.

It is the quantity that helps to determine how close predictions are to the final results.

1 n
MAE = —Z o = bi (5.2)
n i=1
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* MSE: A error metric corresponding to the expected value of the squared (quadratic)
error or loss. .
1
MSE == (0;= ;)" (5.3)
n«
i=1
* RMSE: It is a frequently used measure of the differences between values predicted by a
model or an estimator and the true values. In other words, it tells you how concentrated
the data is around the line of best fit.

N S S P
RMSE_¢HZ(O, 6, (5.4)

i=1
5.4 Robustness Performance of Models

The performance of the proposed method has been evaluated with four performance mea-
surement indices: R%Z, MAE, MSE, and RMSE It is noteworthy that the proximity of R%*to 1
indicates the strength of the relationship between model outputs and reference values. The
RMSE and MSE show relative errors, and the MAE represents the absolute error. R? shows
a correlation of blood component (Hb and GI) levels with input features. The higher values
of R? indicate that the model performed well with the input datasets.

In this study, a total of 93 subjects (59 male (63.5%) and 34 female (36.5%)) were studied
ranging in age from 0 to 69 years. The range of reference blood hemoglobin values for this
study from 7.9 g/dL to 21.49 g/dL, with u = 12.933 g/dL and o = 2.137 g/dL. Similarly, for
the clinically measured individual sample, the range of reference blood glucose values for
this study from 3.33 mmol/L to 21.11 mmol/L, with u = 6.64 mmol/L and o~ = 2.97 mmol/L.

In this study, the models were trained and validated using the two datasets. The first
dataset consisted of extracted PPG signal’s features (PPG-34), whereas the PPG signal was
generated using the mean of pixels of each frame. Second dataset consisted of features
extracted from PPG (PPG-34), whereas the PPG signal was generated using the mean of
pixels of each frame above the threshold. Age and Gender were also added as features. The
datasets were PPG-HbGl; and PPG-HbGI,, respectively.

5.4.1 PPG-HbGI; Dataset

In the beginning stage, the models were trained and tested using PPG-HbGl; dataset with all
the features for each blood component level (Hb and Gl). A 10-fold cross-validation technique
was used to verify the models, where each fold contains the reference Hb and measurement
Hb levels. Therefore, the mean performance of the models were determined following that.
The same procedure was followed for the blood Gl level. Initially, the ANN models were
applied to estimate the blood Hb and Gl levels. Later, the DNN models were developed to

improve the estimated accuracy. The PPG-HbGI; dataset were also trained using classical



45

regression models such as linear regression (LR) and support vector regression (SVR). Table
5.1 illustrates that our proposed DNN models perform better compared to other models with
all features. The estimated accuracies of proposed DNN models using all features are R> =
0.874 and MAE = 0.414 for Hb level as wll as 0.850 and 0.566 for Gl level, respectively. Table
5.2 shows the reference blood component levels (Hb and Gl) and their respective estimated
values with DNN models with all features. Here, we present the first ten subjects’ data.
Furthermore, the MIC feature selection algorithm was applied to determine the optimal

feature set. It is essential to reduce the likelihood of models being overfitted. After using

Table 5.1: Performance measurement of blood component levels using various models
with all features (PPG-HbGI,; dataset).

With all features
Model Hb Gl
R? MAE MSE RMSE| R? MAE MSE  RMSE
LR 0.188  0.727 0.878  0.937 0201  0.843  2.696  1.642
SVR 0.247  0.695 0.815  0.902 0.320 0954 2136  1.461
ANN 0.842 0.284 0726  0.852 0.817 0439 1.610  1.269
Proposed(DNN) 0.874 0.414  0.581  0.762 0.850 0.566 1.319  1.148
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Figure 5.1: Relationship and agreement (Bland-Altman) plots between estimated values
and reference values of Hb and Gl levels at testing stage for DNN models with all features
using PPG-HbGI, dataset: (a) relationship (Hb), (b) agreement (Hb), (c) relationship (GlI),

and (d) agreement (Gl).
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Table 5.2: Estimated Blood component levels (Hb and Gl) from the DNN models with
their corresponding reference values and their difference using PPG-HbGlI; dataset with
all features.

Hemoglobin Glucose
Patient ID | Reference Estimated . Reference Estimated .
Difference Difference
Hb Hb Gl Gl
01 11.9 11.68 0.22 4.44 4.64 -0.2
02 12.1 12.33 -0.23 6.61 6.08 0.53
03 14.3 14.57 -0.27 6.55 4.59 1.96
04 13.6 13.36 0.24 4.66 4.9 -0.24
05 12.3 13.35 -1.05 6.28 5.72 0.56
06 11.3 11.51 -0.21 5.28 5.32 -0.04
07 13.7 13.69 0.01 4.94 5.8 -0.86
08 14.5 14.6 -0.1 8.67 8.16 0.51
09 14.6 144 0.2 4.83 6.08 -1.25
10 12.8 12.78 0.02 11.39 12.4 -1.01

the MIC algorithm on the PPG-HbGI; dataset, the number of features was reduced from
36 to 22 for Hb and 21 for Gl, respectively. From Table 4.3, it is shown that the optimal
features are varied with regard to measurement level. It is occurred due to different features
are correlated to different blood component levels. Therefore, the optimal features were fed
to the ANN and DNN models to estimate the blood component levels. Models were validated
using 10-fold cross-validation for each reference blood component level. According to the
obtained results in Table 5.3, the estimated accuracies of proposed DNN models with MIC
algorithm are R> = 0.963, and MAE = 0.243 for Hb level as wll as 0.964 and 0.303 for Gl
level, respectively. Overall, it is clear that the proposed method (DNN+MIC) provides the
best-estimated accuracy compared to classical algorithms and ANN models, as well as DNN
models with all features. Table 5.4 shows the reference blood component levels (Hb and Gl)

and their respective estimated values with DNN models with all features.

Table 5.3: Performance measurement of blood component levels using various models
with optimal feature set via MIC feature selection algorithm (PPG-HbGlI; dataset).

With selected features via MIC (22 features for Hb and 21 features for GI)

Model Hb Gl

R? MAE MSE RMSE | R? MAE MSE RMSE
LR 0.281 0.675 0.815 0924 | 0352 0924 2201 1.365
SVR 0421 0517 0684 0769 |0.592 0.674 1799  1.024
ANN 0.901 0278 0467 0683 |[0.898 0.507 1.031 0.988
Proposed(DNN+MIC) 0.963 0.243 0.164 0.405 | 0964 0303 0320 0.566
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Figure 5.2: Relationship and agreement (Bland-Altman) plots between estimated values
and reference values of Hb and Gl levels at testing stage for DNN models with MIC
selected features using PPG-HbGI; dataset: (a) relationship (Hb), (b) agreement (Hb), (c)
relationship (Gl), and (d) agreement (GI).

A relationship between the reference values and estimated values for blood component

Table 5.4: Estimated Blood component levels (Hb and Gl) from the DNN models with
their corresponding reference values and their difference using PPG-HbGl; dataset with
MIC selected features.

Hemoglobin Glucose
Patient ID | Reference Estimated . Reference Estimated .
Difference Difference
Hb Hb Gl Gl
01 11.9 12.14 -0.24 4.44 4.45 -0.01
02 12.1 12.55 -0.45 6.61 6.71 -0.1
03 14.3 14.51 -0.21 6.55 5.55 1.0
04 13.6 13.51 0.09 4.66 5.21 -0.55
05 12.3 13.26 -0.96 6.28 5.7 0.58
06 11.3 10.81 0.49 5.28 5.28 -0.0
07 13.7 13.45 0.25 4.94 5.82 -0.88
08 14.5 14.5 -0.0 8.67 8.91 -0.24
09 14.6 14.02 0.58 4.83 5.9 -1.07
10 12.8 13.09 -0.29 11.39 11.6 -0.21
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levels has been established to understate the above results better. Figure 5.1 ((a), and (c)) and
Figure 5.2 ((a), and (c)) show the correlation-based comparison between estimated values
and reference values for Hb and Gl levels for DNN models, respectively. Furthermore, Figure
5.3 ((b), and (d)) and Figure 5.4 ((b), and (d)) depict the Bland-Altman plot for determining
the distance between the measurement value and the reference value. Bland-Altman plot
[87] establishes limits of agreement to specify the relationship between these values. The
plots show that a higher percentage of measurement values are within the limits of agreement
(md +1.96 % sd). At 95%, confidence interval, the limits of agreement for Hb with all features
were [-1.584, 1.376], and [-0.884, 0.617] for MIC selected features. Similarly, the limits of
agreement for Gl with all features were [-2.184, 2.311], and [-0.923, 1.218] for MIC selected

features.

5.4.2 PPG-HbGI, Dataset

In the second stage, the models were trained and tested using PPG-HbGI; dataset with all the
features for each blood component level. We have applied the same procedure in this stage,
like for PPG-HbGI; dataset. Initially, the ANN models were developed to estimate the Hb
and Gl level, respectively. Further, two independent DNN models were developed to improve
the estimation performance. The proposed DNN based models were trained and tested with
all the features for each blood component level. The PPG-HbGI, dataset was also trained
using classical regression models such as LR and SVR, respectively. Table 5.5 illustrates
the comparison of estimation results for our proposed DNN models with other modes for all
features. The estimated accuracies of proposed DNN models using all features are R> = 0.897
and MAE = 0.357 for Hb level as wll as 0.874 and 0.545 for Gl level, respectively. Table 5.6
illustrate the reference blood component levels (Hb and GI) and their respective estimated

values with DNN models with all features.

Table 5.5: Performance measurement of blood component levels using various models
with all features (PPG-HbGlI, dataset).

With all features

Model Hb Gl

R? MAE MSE RMSE| R? MAE MSE  RMSE
LR 0.188  0.727 0.878  0.937 0.201  0.843 2.696  1.642
SVR 0247  0.695 0.815  0.902 0.320 0954  2.136  1.461
ANN 0.853  0.386  0.678  0.823 0.848 0490 1294  1.137
Proposed(DNN) 0.897  0.357 0470  0.686 0.874 0.545 1.102  1.049

Besides, the MIC feature selection algorithm was applied to PPG-HbGI, dataset to
determine the optimal feature set. After using the MIC algorithm on the PPG-HbGl, dataset,
the number of features was reduced from 36 to 22 for Hb and 21 for Gl, respectively.
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Figure 5.3: Relationship and agreement (Bland-Altman) plots between estimated values
and reference values of Hb and Gl levels at testing stage for DNN models with all features
using PPG-HbG]I, dataset: (a) relationship (Hb), (b) agreement (Hb), (c) relationship (GlI),

and (d) agreement (Gl).

Table 5.6: Estimated Blood component levels (Hb and Gl) from the DNN models with
their corresponding reference values and their difference using PPG-HbGI, dataset with
all features (more details in Appendix Table A.2).

Hemoglobin Glucose
Patient ID | Reference Estimated . Reference Estimated .
Difference Difference
Hb Hb Gl Gl
01 11.9 12.2 -0.3 4.44 4.15 0.29
02 12.1 11.87 0.23 6.61 6.25 0.36
03 14.3 14.1 0.2 6.55 4.9 1.65
04 13.6 13.47 0.13 4.66 4.82 -0.16
05 12.3 13.64 -1.34 6.28 6.14 0.14
06 11.3 12.01 -0.71 5.28 5.1 0.18
07 13.7 13.75 -0.05 4.94 5.77 -0.83
08 14.5 14.43 0.07 8.67 8.98 -0.31
09 14.6 14.67 -0.07 4.83 5.14 -0.31
10 12.8 12.57 0.23 11.39 11.39 -0.0
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Table 5.7: Performance measurement of blood component levels using various models
with optimal feature set via MIC feature selection algorithm (PPG-HbGI, dataset).

With selected features via MIC (22 features for Hb and 21 features for GI)

Model Hb Gl

R? MAE MSE RMSE | R? MAE MSE  RMSE
LR 0281 0.675 0815 0924 |[0.352 0924 2201 1365
SVR 0421 0517 0.684 0.769 | 0592 0.674 1.799 1.024
ANN 0.922 0.195 0359 0599 |[0.901 0407 0.824 0.768
Proposed(DNN+MIC) 0.969 0.235 0.139 0.373 | 0968 0.263 0.280  0.529

Therefore, the optimal features were fed to the ANN and DNN models to estimate the blood

component levels. According to the obtained results in Table 5.7, the estimated accuracies
of proposed DNN models with MIC algorithm are R*> = 0.969, and MAE = 0.235 for Hb
level as wll as 0.968 and 0.263 for Gl level, respectively. Overall, it is clear that the proposed

method (DNN+MIC) provides the best-estimated accuracy compared to classical algorithms

and DNN models with all features. Table 5.8 demonstrate the reference blood component

levels (Hb and Gl) and their respective estimated values with DNN models with all features.
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Figure 5.4: Relationship and agreement (Bland-Altman) plots between estimated values
and reference values of Hb and Gl levels at testing stage for DNN models with MIC
selected features using PPG-HbGI, datase: (a) relationship (Hb), (b) agreement (Hb), (c)

relationship (Gl), and (d) agreement (GI).
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Moreover, it can be noted that our proposed method perform betther for PPG-HbGl,
dataset compared to PPG-HbGI; dataset. From Table 5.3, it is shown that the estimated
accuracies of proposed method (DNN+MIC) are R*> = 0.963, and MAE = 0.243 for Hb
level as wll as 0.964 and 0.303 for Gl level, respectively, for PPG-HbGI; dataset. On the
other hand, Table 5.3, it is illustrated that the estimated accuracies of proposed method
(DNN+MIC) are R? = 0.969, and MAE = 0.235 for Hb level as wll as 0.968 and 0.263 for
Gl level, respectively, for PPG-HbGl, dataset. In the PPG-HbGl, dataset, PPG signals were
generated from only valid frames. Erroneous frames (frames that are too dark due to incorrect
placement of the finger on the camera and NID-LED) were rejected using the threshold value.
Therefore, characteristic features were extracted from the more accurate PPG signals. Hence,
PPG-HbGI, dataset provides better results than PPG-HbGl, dataset.

Table 5.8: Estimated Blood component levels (Hb and Gl) from the DNN models with
their corresponding reference values and their difference using PPG-HbGI, dataset with
MIC selected features (more details in Appendix Table A.2).

Hemoglobin Glucose
Patient ID | Reference Estimated . Reference Estimated .
Difference Difference
Hb Hb Gl Gl
01 11.9 11.92 -0.02 4.44 4.37 0.07
02 12.1 11.79 0.31 6.61 7.12 -0.51
03 14.3 14.47 -0.17 6.55 5.71 0.84
04 13.6 13.63 -0.03 4.66 4.79 -0.13
05 12.3 12.45 -0.15 6.28 5.65 0.63
06 11.3 11.43 -0.13 5.28 5.56 -0.28
07 13.7 13.65 0.05 4.94 5.09 -0.15
08 14.5 14.53 -0.03 8.67 8.65 0.02
09 14.6 14.94 -0.34 4.83 5.19 -0.36
10 12.8 12.77 0.03 11.39 10.84 0.55

Figure 5.3 ((a), and (c)) and Figure 5.4 ((a), and (c)) show the correlation-based com-
parison between estimated values and reference values for Hb and Gl levels, respectively,
for PPG-HbGlI, dataset. Furthermore, Figure 5.3 ((b), and (d)) and Figure 5.4 ((b), and (d))
depict the Bland-Altman plot for determining the distance between the measurement value
and the reference value. At 95%, confidence interval, the limits of agreement for Hb with
all features were [-1.327, 1.361], and [-0.761, 0.699] for MIC selected features. Similarly,
the limits of agreement for Gl with all features were [-2.080, 2.035], and [-1.033, 1.0434] for
MIC selected features using PPG-HbGlI, dataset.
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5.5 Unsuccessful Case Example

From Table 5.8, it is shown that the difference between estimated and reference Gl values
for fingertip video (ID 3) is higher compared to other samples. The generation of good
PPG signals from fingertip video and feature extraction influences the accuracy of estimation
models. The PPG signal can be corrupted due to the movement of the fingertip during the
fingertip video collection. Figure 5.5 shows the generated PPG signal from the fingertip
video of Patient ID 3. The PPG signal is slightly affected by noise and motion artefacts,
which influences further analysis. Hence, it increases the estimated error. However, the error
between estimated and reference Gl values is 0.84, it seems it is not too high and the proposed
system can be applied in clinical trials. More deatails about PPG signal and its extracted

features is presented in Appendix Table A.2.
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Figure 5.5: Selected PPG signal generated from fingertip video.

5.6 Comparison with Other Works

A comparison study is drawn in Table 5.9 for estimating hemoglobin and glucose levels to
validate our contributions with respect to existing works that used the smartphone camera for
data collection.

Looking atindividual related works in Table 5.9, Wang et al. [35] developed a smartphone-
based application named as HemaApp (FDA-approved device) to measure Hb level non-
invasively. The authors captured fingertip video data from 31 subjects using Nexus-5p, used
the SVR model, and achieved highest relationship with correlation coefficient (R) of 0.82.

In [24], the same authors improved the configuration of hardware and used the LR model,
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Table 5.9: Comparison of our proposed DNN based models with several exiting
smartphone-based non-invasive methods.

Authors Purpose  #Sub Smartphone Captured  Algorithm(s) Performance
Wang et al. [35] @ 31 Nexus-5p " SVR R=0.82
Edward et al. @ 3 Nexus-6p G LR R=0.62
[24]
Anggraeni and 20  Asus Zen-Fone '3 LR R?>=0.81
Fatoni [36] 2 Laser
Hasanetal. [37] ] 75 Nexus-4p G ANN R>=0.93
Zhang et al. (6] 14 iPhone 6s Plus & DT, BT and Acc =
[39] KNN 86.2%
Chowdhury et O 18 iPhone 7 Plus & PCR SEP =
al. [38] 18.31mg/dL
Glovanni et al. B 113 iPhone 4s, Kg KNN R=0.65
[51] Huawei p7

@ - R% =0.969
Proposed Method { (6] 93 Nexus-6p (@] DNN {Rz —0.968

@ - Hemoglobin, & = Glucose, - Video, @ =Image, SVR = Support Vector Regression, LR
= Linear Regression, ANN = Artificial Neural Network, DT = Decision Tree, BT = Bagged Trees,
KNN = K-nearest neighbor, PCR = Principal Component Regression, SEP = Standard Error of
Prediction, DNN = Deep Neural Network.

and achieved a Pearson correlation of 0.62. Anggraeni and Fatoni [36] developed LR model
using conjunctiva image of 20 participants captured by Asus ZenFone 2 and estimated the
Hb level that highly correlated with clinical Hb value and gained a relationship with R? of
0.81. In [37], the authors developed a smartphone-based application named as SmartHeLP
to measure the Hb concentration in blood. In this case, they collected 75 fingertip video data
via Nexus-4p smartphone and applied in the ANN model, and achieved relationship with R?
of 0.93. Zhang et al. [39] developed a system for the estimation of blood Gl level based on
smartphone fingertip video. The authors acquired the PPG signal from video, used subspace
KNN classifier and obtained the accuracy Acc = 86.2%. Chowdhury et al. [38] proposed
a smartphone-based approach to estimate the blood Gl level in a non-invasive. The authors
recorded the fingertip video, converted the frames into PPG signal, applied PCR algorithm
on the extracted features, and achieved a SEP as low as 18.31 mg/dL. Glovanni et al. [51]
designed a non-invasive system to screen the anemia using conjunctiva image. The authors
used two smartphones, iPhone 4s and Huawei p7 to collect the conjunctiva images from 113
subjects, applied KNN model on the extracted features and achieved the R values as 0.65.
However, it is difficult to compare existing works related to this filed due to different datasets,

hardware configuration, and smartphone to collect the data from various parts of the subject’s
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body and different evaluation criteria.

In our proposed method, we have used a smartphone device (Nexus-6p) to capture the
fingertip video data, generated PPG signal from fingertip videos, applied various preprocess-
ing techniques to minimize the noise, extracted 34 features from PPG signal, applied MIC
feature selection algorithm to select optimal feature set and developed DNN based models to
estimate the hemoglobin, and glucose levels more accurately. It is almost clear from these

results that our proposed methodology can be used in real-time healthcare applications.

5.7 Conclusion

In this study, we have trained and validated our proposed method using two datasets. Our
proposed DNN model, along with MIC-based selected features, performed better than the
model with all features using the PPG-HbGl, dataset for estimating haemoglobin and glucose
levels. We have also compared our proposed method with existing methods that used

smartphones to acquire data.
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CHAPTER VI

Conclusion and Recommendation

6.1 Conclusions

Regular hemoglobin and glucose level monitoring prevents long-term and short-term con-
sequences for anemic and diabetic patients, respectively. This paper has proposed a novel
non-invasive method to estimate blood Hb and Gl levels with smartphone PPG signals ex-
tracted from fingertip videos and deep neural network model. It provides an excellent basis
for observing real-time blood haemoglobin and glucose levels at home. For this purpose,
fingertip video is first captured using a smartphone camera while the fingertip is illuminated
using the NIR-LED kit. As the smartphone’s camera and flashlight are not designed for this
purpose, several difficulties have been faced in capturing noise-free data. We have also dis-
cussed the challenges faced in the data collection stage and outlined some recommendations
for noise-free data collection. Secondly, the frames are converted into PPG signals and then
34 features extracted from the PPG signal, its derivatives, and Fourier form. Age and gender
of each subject are also added as features. Thirdly, appropriate features are selected using
the MIC feature selection technique. Finally, two independent DNN models are developed
to estimate hemoglobin and glucose using these features and validated with 10-fold cross-
validation. In this work, we wanted to compare classical regression models with DNN models
for medical data. The results are compared with classical regression models to evaluate the
performance of the DNN-based model. The DNN model and the MIC feature selection
method provided the highest estimated accuracy in measuring the Hb and Gl levels. The

results indicate that our proposed technique can be used in clinical practice.

6.2 Recommendation for Future Work

Non-invasive techniques are an attractive research field. We believe that a clinically accurate
and acceptable model can be developed based on the work reported here if we can create
acceptable signal-to-noise ratios and rigorous signal processing techniques and analyze larger
data sets from patients with the full range of hemoglobin and glucose levels seen in clinical
practice. We suggest that pursuing the following strategies will likely lead to the definition
of a more accurate and acceptable clinical estimation model.

* Minimizing signal-to-noise ratios (SNR) in PPG signals generation and feature extrac-

tion to improve the accuracy of estimation models [88].
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* Developing the PPG generation algorithm using the ratio of superimposition averag-
ing template and pulse wave [89], optimized differential extraction method [90], and
dynamic spectrum method [91].

* Constructing a well-designed hardware system, to reduce the pressure of the fingertip-
pad on the smartphone camera and finger movement that can alter the waveform of the
PPG signal [92].

* Providing a smartphone application to measure hemoglobin and glucose and transfer-

ring high computational processes from smartphones to the cloud [93].
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Appendix

A. Data Collection

The fingertip video was filmed during the routine checkup of the patients at the Medical
Centre Hospital, 953, O.R. Nizam Road, Chattogram, Bangladesh. The authorities and
medical teams approved the study at the Medical Centre Hospital. All the subjects were
informed of the entire procedure and provided written consent before the data recording. The
full dataset is reported in Table A.1.

Table A.1: Patients information with their clinical data

SL No. Age Gender Video Data Hb Gl
01 34 F " 11.9 4.44
02 22 F " 12.1 6.61
03 23 M " 14.3 6.55
92 27 a 13.0 5.80
93 34 G 12.9 10.8
* B = Video

B. Data Collection Protocal

* Initially, we received permission from the Department of CSE, KUET, Khulna, Bangladesh.

* We applied for permission for data collection from the Medical Centre Hospital.

* The medical authority examined our device and data collection procedure. With the
medical authority’s approval, we were then allowed to collect the fingertip videos.

* We trained a team from the hospital on the procedure to collect fingertip data. As an
example, we collected fingertip video data from five individuals in front of them.

* Pathologists and doctors took the blood sample of the patients. Patients whose blood
samples met our requirements were asked the question “can we take a fingertip video
using a smartphone for research purpose?”

* If the patient agreed to participate in the fingertip video after being informed of the
research purpose, the nurse recorded the patient’s fingertip video.
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Table A.2: Selected PPG signal, corresponding extracted features values, and estimated
values using DNN models.

Hb Gl
PPG Signal Features (f] to f36) . r - -
or 0 0 or 0 0
o o Emwmseeme]l 9370 127 0 0.02 195 008 204 098
5 >~ 011 004 006 008 50  -1.29 298
v 975 80.1 308 646 110 111002 | o oo ol s g
. 0.04 006 009 005 002 008 938
: 139 211 117 316 051 147 34
8.0 8.2 mé:;:[:) 8.6 8.8 0.0
of - Emmsenc]| 085 047 002 062 01 054 -0.62
- 012 004 01 01 70 004 649
. \ 388 165  -1848 412 230 286  0.02
v 58 : 548 200 286 0021 17 179 661 625 712
" 006 01 0.l 006 003 009 938
|| 038 1992 004 2891 007 086 22
88 9.0 TI:)\.Z‘S‘ 94 9.6 OO
o Emosere]l 193 106 002 039 008 045 027
* T 013 004 006 008 50 665 263
° 947 183 851 385 =992 211 0.2
. ST 1838 B3 99 02 1143 141 1447 655 49 571
, 0.04 006 0.1 005 002 008 859
4 1] 087 179 076 265 038 139 23
36 38 ‘;’60(5) 42 4.6 1'0

* 0, = reference value , 6* = estimated value with DNN model with all features and 6* estimated
value with DNN model with MIC selected features.

C. Butterworth Filter

Butterworth filter make the frequency response of a signal as flat as possible in the passband.
It is called maximally flat filter because it does not have any ripple in the passband or the
stopband. It can be used as highpass, lowpass, or bandpass filter. Luke et al. used an
algorithm consists of both butterworth low pass filtering and wavelet transform to remove
motion artifacts from PPG data [94]. For a input X, output Y and order n, the factored form
Butterworth filter is given by:

Butty(X) = Y = ap X"+ ap 1 X" 4y X"+ a1 X +ag (C..1)
de as aq as ar aq ap 1n
1 1 1
1 V2 1 2
1 2 2 1 3
1 2613 3414 2613 1 4
1 3236 5236 5236 323 1 5
1 3864 7.464 9.141 7464 3864 1 6

In our case, we used butter() function of ’scipy’ library (in python programming language)
for Butterworth filter in the implementation.
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D. Discrete Fourier Transform

A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier
transform. Fourier transform For X length of n are defined as follows:

Y (k) = ZX(j)Wn<f-l)<k-1> (D..2)
=1

where
W, = o(=2mi)/n

Let: X =x¢,x1,x2,x3 then the out sequence can be represented as below:

Y(O) 1 1 1 1 X0
Yy(nf |1 eI 2rIN)  ,=j(4x/N)  ,=j(6n/N) |
Y T |1 eér/N)  omiBx/N) - p=i(127/N) %
Y(3) 1 e(6n/N)  ,=j(127/N)  ,~j(1871/N) X3

Then, Y (0) contains the zero-frequency term (fundamental component), Y (1) contains the
2"d component, Y(2) contains the 3 component, Y (3) contains the 4” component.

In our case, we used ftt() function of >numpy’ library (in python programming language) for
discrete Fourier transform in the implementation.
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